This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 698

2010 Hanoi Open Mathematics Competitions, 9

Let be given a triangle $ABC$ and points $D,M,N$ belong to $BC,AB,AC$, respectively. Suppose that $MD$ is parallel to $AC$ and $ND$ is parallel to $AB$. If $S_{\vartriangle BMD} = 9$ cm $^2, S_{\vartriangle DNC} = 25$ cm$^2$, compute $S_{\vartriangle AMN}$?

2000 Austrian-Polish Competition, 8

In the plane are given $27$ points, no three of which are collinear. Four of this points are vertices of a unit square, while the others lie inside the square. Prove that there are three points in this set forming a triangle with area not exceeding $1/48$.

2017 BMT Spring, 16

Let $ABC$ be a triangle with $AB = 3$, $BC = 5$, $AC = 7$, and let $ P$ be a point in its interior. If $G_A$, $G_B$, $G_C$ are the centroids of $\vartriangle PBC$, $\vartriangle PAC$, $\vartriangle PAB$, respectively, find the maximum possible area of $\vartriangle G_AG_BG_C$.

1983 All Soviet Union Mathematical Olympiad, 365

One side of the rectangle is $1$ cm. It is known that the rectangle can be divided by two orthogonal lines onto four rectangles, and each of the smaller rectangles has the area not less than $1$ square centimetre, and one of them is not less than $2$ square centimetres. What is the least possible length of another side of big rectangle?

2020 BMT Fall, 13

Tags: hexagon , area , geometry
Sheila is making a regular-hexagon-shaped sign with side length $ 1$. Let $ABCDEF$ be the regular hexagon, and let $R, S,T$ and U be the midpoints of $FA$, $BC$, $CD$ and $EF$, respectively. Sheila splits the hexagon into four regions of equal width: trapezoids $ABSR$, $RSCF$ , $FCTU$, and $UTDE$. She then paints the middle two regions gold. The fraction of the total hexagon that is gold can be written in the form $m/n$ , where m and n are relatively prime positive integers. Compute $m + n$. [img]https://services.artofproblemsolving.com/download.php?id=YXR0YWNobWVudHMvYS9lLzIwOTVmZmViZjU3OTMzZmRlMzFmMjM1ZWRmM2RkODMyMTA0ZjNlLnBuZw==&rn=MjAyMCBCTVQgSW5kaXZpZHVhbCAxMy5wbmc=[/img]

2008 Oral Moscow Geometry Olympiad, 2

The radii $r$ and $R$ of two non-intersecting circles are given. The common internal tangents of these circles are perpendicular. Find the area of the triangle bounded by these tangents, as well as the common external tangents.

1941 Eotvos Mathematical Competition, 2

Prove that if all four vertices of a parallelogram are lattice points and there are some other lattice points in or on the parallelogram, then its area exceeds $1$.

Estonia Open Senior - geometry, 1999.2.3

Two right triangles are given, of which the incircle of the first triangle is the circumcircle of the second triangle. Let the areas of the triangles be $S$ and $S'$ respectively. Prove that $\frac{S}{S'} \ge 3 +2\sqrt2$

Denmark (Mohr) - geometry, 2016.3

Prove that all quadrilaterals $ABCD$ where $\angle B = \angle D = 90^o$, $|AB| = |BC|$ and $|AD| + |DC| = 1$, have the same area. [img]https://1.bp.blogspot.com/-55lHuAKYEtI/XzRzDdRGDPI/AAAAAAAAMUk/n8lYt3fzFaAB410PQI4nMEz7cSSrfHEgQCLcBGAsYHQ/s0/2016%2Bmohr%2Bp3.png[/img]

1997 Mexico National Olympiad, 5

Tags: ratio , geometry , area
Let $P,Q,R$ be points on the sides $BC,CA,AB$ respectively of a triangle $ABC$. Suppose that $BQ$ and $CR$ meet at $A', AP$ and $CR$ meet at $B'$, and $AP$ and $BQ$ meet at $C'$, such that $AB' = B'C', BC' =C'A'$, and $CA'= A'B'$. Compute the ratio of the area of $\triangle PQR$ to the area of $\triangle ABC$.

2002 Denmark MO - Mohr Contest, 1

Tags: area , rectangle , geometry
An interior point in a rectangle is connected by line segments to the midpoints of its four sides. Thus four domains (polygons) with the areas $a, b, c$ and $d$ appear (see the figure). Prove that $a + c = b + d$. [img]https://1.bp.blogspot.com/-BipDNHELjJI/XzcCa68P3HI/AAAAAAAAMXY/H2Iqya9VItMLXrRqsdyxHLTXCAZ02nEtgCLcBGAsYHQ/s0/2002%2BMohr%2Bp1.png[/img]

1990 Poland - Second Round, 6

For any convex polygon $ W $ with area 1, let us denote by $ f(W) $ the area of the convex polygon whose vertices are the centers of all sides of the polygon $ W $. For each natural number $ n \geq 3 $, determine the lower limit and the upper limit of the set of numbers $ f(W) $ when $ W $ runs through the set of all $ n $ convex angles with area 1.

2019 Abels Math Contest (Norwegian MO) Final, 3a

Three circles are pairwise tangent, with none of them lying inside another. The centres of the circles are the corners of a triangle with circumference $1$. What is the smallest possible value for the sum of the areas of the circles?

1969 Czech and Slovak Olympiad III A, 2

Five different points $O,A,B,C,D$ are given in plane such that \[OA\le OB\le OC\le OD.\] Show that for area $P$ of any convex quadrilateral with vertices $A,B,C,D$ (not necessarily in this order) the inequality \[P\le \frac12(OA+OD)(OB+OC)\] holds and determine when equality occurs.

1979 All Soviet Union Mathematical Olympiad, 269

What is the least possible ratio of two isosceles triangles areas, if three vertices of the first one belong to three different sides of the second one?

2013 Denmark MO - Mohr Contest, 2

The figure shows a rectangle, its circumscribed circle and four semicircles, which have the rectangle’s sides as diameters. Prove that the combined area of the four dark gray crescentshaped regions is equal to the area of the light gray rectangle. [img]https://1.bp.blogspot.com/-gojv6KfBC9I/XzT9ZMKrIeI/AAAAAAAAMVU/NB-vUldjULI7jvqiFWmBC_Sd8QFtwrc7wCLcBGAsYHQ/s0/2013%2BMohr%2Bp3.png[/img]

2000 Swedish Mathematical Competition, 4

The vertices of a triangle are three-dimensional lattice points. Show that its area is at least $\frac12$.

1974 All Soviet Union Mathematical Olympiad, 204

Tags: area , geometry , minimum
Given a triangle $ABC$ with the are $1$. Let $A',B'$ and $C' $ are the midpoints of the sides $[BC], [CA]$ and $[AB]$ respectively. What is the minimal possible area of the common part of two triangles $A'B'C'$ and $KLM$, if the points $K,L$ and $M$ are lying on the segments $[AB'], [CA']$ and $[BC']$ respectively?

1998 Iran MO (3rd Round), 2

Let $ABCD$ be a cyclic quadrilateral. Let $E$ and $F$ be variable points on the sides $AB$ and $CD$, respectively, such that $AE:EB=CF:FD$. Let $P$ be the point on the segment $EF$ such that $PE:PF=AB:CD$. Prove that the ratio between the areas of triangles $APD$ and $BPC$ does not depend on the choice of $E$ and $F$.

2019 PUMaC Individual Finals A, B, A3

Let $ABCDEF$ be a convex hexagon with area $S$ such that $AB \parallel DE$, $BC \parallel EF$, $CD \parallel FA$ holds, and whose all angles are obtuse and opposite sides are not the same length. Prove that the following inequality holds: $$A_{ABC} + A_{BCD} + A_{CDE} + A_{DEF} + A_{EFA} + A_{FAB} < S$$ , where $A_{XYZ}$ is the area of triangle $XYZ$

2014 Sharygin Geometry Olympiad, 14

Tags: circles , geometry , area
In a given disc, construct a subset such that its area equals the half of the disc area and its intersection with its reflection over an arbitrary diameter has the area equal to the quarter of the disc area.

1985 Traian Lălescu, 1.1

Consider the function $ f:\mathbb{R}\longrightarrow\mathbb{R} ,\quad f(x)=\max (x-3,2) . $ Find the perimeter and the area of the figure delimited by the lines $ x=-3,x=1, $ the $ Ox $ axis, and the graph of $ f. $

2009 Oral Moscow Geometry Olympiad, 2

Trapezium $ABCD$ and parallelogram $MBDK$ are located so that the sides of the parallelogram are parallel to the diagonals of the trapezoid (see fig.). Prove that the area of the gray part is equal to the sum of the areas of the black part. (Yu. Blinkov) [img]https://cdn.artofproblemsolving.com/attachments/b/9/cfff83b1b85aea16b603995d4f3d327256b60b.png[/img]

1956 Moscow Mathematical Olympiad, 329

Consider positive numbers $h, s_1, s_2$, and a spatial triangle $\vartriangle ABC$. How many ways are there to select a point $D$ so that the height of tetrahedron $ABCD$ drawn from $D$ equals $h$, and the areas of faces $ACD$ and $BCD$ equal $s_1$ and $s_2$, respectively?

2001 Regional Competition For Advanced Students, 3

In a convex pentagon $ABCDE$, the area of the triangles $ABC, ABD, ACD$ and $ADE$ are equal and have the value $F$. What is the area of the triangle $BCE$ ?