This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 259

2006 Sharygin Geometry Olympiad, 9.5

A straight line passing through the center of the circumscribed circle and the intersection point of the heights of the non-equilateral triangle $ABC$ divides its perimeter and area in the same ratio.Find this ratio.

1999 ITAMO, 1

A rectangular sheet with sides $a$ and $b$ is fold along a diagonal. Compute the area of the overlapping triangle.

2015 Indonesia MO Shortlist, N2

Suppose that $a, b$ are natural numbers so that all the roots of $x^2 + ax - b$ and $x^2 - ax + b$ are integers. Show that exists a right triangle with integer sides, with $a$ the length of the hypotenuse and $b$ the area .

1968 AMC 12/AHSME, 12

A circle passes through the vertices of a triangle with side-lengths of $7\tfrac{1}{2},10,12\tfrac{1}{2}$. The radius of the circle is: $\textbf{(A)}\ \dfrac{15}{4} \qquad \textbf{(B)}\ 5 \qquad \textbf{(C)}\ \dfrac{25}{4} \qquad \textbf{(D)}\ \dfrac{35}{4} \qquad \textbf{(E)}\ \dfrac{15\sqrt2}{2} $

2012 AMC 8, 23

An equilateral triangle and a regular hexagon have equal perimeters. If the area of the triangle is 4, what is the area of the hexagon? $\textbf{(A)}\hspace{.05in}4 \qquad \textbf{(B)}\hspace{.05in}5 \qquad \textbf{(C)}\hspace{.05in}6 \qquad \textbf{(D)}\hspace{.05in}4\sqrt3 \qquad \textbf{(E)}\hspace{.05in}6\sqrt3 $

1989 AIME Problems, 15

Point $P$ is inside $\triangle ABC$. Line segments $APD$, $BPE$, and $CPF$ are drawn with $D$ on $BC$, $E$ on $AC$, and $F$ on $AB$ (see the figure at right). Given that $AP=6$, $BP=9$, $PD=6$, $PE=3$, and $CF=20$, find the area of $\triangle ABC$. [asy] size(200); pair A=origin, B=(7,0), C=(3.2,15), D=midpoint(B--C), F=(3,0), P=intersectionpoint(C--F, A--D), ex=B+40*dir(B--P), E=intersectionpoint(B--ex, A--C); draw(A--B--C--A--D^^C--F^^B--E); pair point=P; label("$A$", A, dir(point--A)); label("$B$", B, dir(point--B)); label("$C$", C, dir(point--C)); label("$D$", D, dir(point--D)); label("$E$", E, dir(point--E)); label("$F$", F, dir(point--F)); label("$P$", P, dir(0));[/asy]

1958 AMC 12/AHSME, 36

The sides of a triangle are $ 30$, $ 70$, and $ 80$ units. If an altitude is dropped upon the side of length $ 80$, the larger segment cut off on this side is: $ \textbf{(A)}\ 62\qquad \textbf{(B)}\ 63\qquad \textbf{(C)}\ 64\qquad \textbf{(D)}\ 65\qquad \textbf{(E)}\ 66$

1988 IMO Longlists, 84

A point $ M$ is chosen on the side $ AC$ of the triangle $ ABC$ in such a way that the radii of the circles inscribed in the triangles $ ABM$ and $ BMC$ are equal. Prove that \[ BM^{2} \equal{} X \cot \left( \frac {B}{2}\right) \] where X is the area of triangle $ ABC.$

2009 Hanoi Open Mathematics Competitions, 9

Give an acute-angled triangle $ABC$ with area $S$, let points $A',B',C'$ be located as follows: $A'$ is the point where altitude from $A$ on $BC$ meets the outwards facing semicirle drawn on $BX$ as diameter.Points $B',C'$ are located similarly. Evaluate the sum $T=($area $\vartriangle BCA')^2+($area $\vartriangle CAB')^2+($area $\vartriangle ABC')^2$.

2012 IFYM, Sozopol, 1

Find the area of a triangle with angles $\frac{1}{7} \pi$, $\frac{2}{7} \pi$, and $\frac{4}{7} \pi $, and radius of its circumscribed circle $R=1$.

1968 IMO Shortlist, 9

Let $ABC$ be an arbitrary triangle and $M$ a point inside it. Let $d_a, d_b, d_c$ be the distances from $M$ to sides $BC,CA,AB$; $a, b, c$ the lengths of the sides respectively, and $S$ the area of the triangle $ABC$. Prove the inequality \[abd_ad_b + bcd_bd_c + cad_cd_a \leq \frac{4S^2}{3}.\] Prove that the left-hand side attains its maximum when $M$ is the centroid of the triangle.

2015 Israel National Olympiad, 2

A triangle is given whose altitudes' lengths are $\frac{1}{5},\frac{1}{5},\frac{1}{8}$. Evaluate the triangle's area.

2017 Yasinsky Geometry Olympiad, 4

Median $AM$ and the angle bisector $CD$ of a right triangle $ABC$ ($\angle B=90^o$) intersect at the point $O$. Find the area of the triangle $ABC$ if $CO=9, OD=5$.

1988 IMO Shortlist, 30

A point $ M$ is chosen on the side $ AC$ of the triangle $ ABC$ in such a way that the radii of the circles inscribed in the triangles $ ABM$ and $ BMC$ are equal. Prove that \[ BM^{2} \equal{} X \cot \left( \frac {B}{2}\right) \] where X is the area of triangle $ ABC.$

2008 AMC 12/AHSME, 18

Triangle $ ABC$, with sides of length $ 5$, $ 6$, and $ 7$, has one vertex on the positive $ x$-axis, one on the positive $ y$-axis, and one on the positive $ z$-axis. Let $ O$ be the origin. What is the volume of tetrahedron $ OABC$? $ \textbf{(A)}\ \sqrt{85} \qquad \textbf{(B)}\ \sqrt{90} \qquad \textbf{(C)}\ \sqrt{95} \qquad \textbf{(D)}\ 10 \qquad \textbf{(E)}\ \sqrt{105}$

1989 IMO Shortlist, 28

Consider in a plane $ P$ the points $ O,A_1,A_2,A_3,A_4$ such that \[ \sigma(OA_iA_j) \geq 1 \quad \forall i, j \equal{} 1, 2, 3, 4, i \neq j.\] where $ \sigma(OA_iA_j)$ is the area of triangle $ OA_iA_j.$ Prove that there exists at least one pair $ i_0, j_0 \in \{1, 2, 3, 4\}$ such that \[ \sigma(OA_iA_j) \geq \sqrt{2}.\]

2012 India Regional Mathematical Olympiad, 4

$H$ is the orthocentre of an acute–angled triangle $ABC$. A point $E$ is taken on the line segment $CH$ such that $ABE$ is a right–angled triangle. Prove that the area of the triangle $ABE$ is the geometric mean of the areas of triangles $ABC$ and $ABH$.

1967 IMO Shortlist, 1

$A_0B_0C_0$ and $A_1B_1C_1$ are acute-angled triangles. Describe, and prove, how to construct the triangle $ABC$ with the largest possible area which is circumscribed about $A_0B_0C_0$ (so $BC$ contains $B_0, CA$ contains $B_0$, and $AB$ contains $C_0$) and similar to $A_1B_1C_1.$

1988 IMO Shortlist, 27

Let $ ABC$ be an acute-angled triangle. Let $ L$ be any line in the plane of the triangle $ ABC$. Denote by $ u$, $ v$, $ w$ the lengths of the perpendiculars to $ L$ from $ A$, $ B$, $ C$ respectively. Prove the inequality $ u^2\cdot\tan A \plus{} v^2\cdot\tan B \plus{} w^2\cdot\tan C\geq 2\cdot S$, where $ S$ is the area of the triangle $ ABC$. Determine the lines $ L$ for which equality holds.

1995 Korea National Olympiad, Day 1

Let $O$ and $R$ be the circumcenter and circumradius of a triangle $ABC$, and let $P$ be any point in the plane of the triangle. The perpendiculars $PA_1,PB_1,PC_1$ are drawn from $P$ on $BC,CA,AB$. Express $S_{A_1B_1C_1}/S_{ABC}$ in terms of $R$ and $d = OP$, where $S_{XYZ}$ is the area of $\triangle XYZ$.

1988 AMC 12/AHSME, 20

In one of the adjoining figures a square of side $2$ is dissected into four pieces so that $E$ and $F$ are the midpoints of opposite sides and $AG$ is perpendicular to $BF$. These four pieces can then be reassembled into a rectangle as shown in the second figure. The ratio of height to base, $XY$ / $YZ$, in this rectangle is [asy] size(180); defaultpen(linewidth(0.7)+fontsize(10)); pair A=(0,1), B=(0,-1), C=(2,-1), D=(2,1), E=(1,-1), F=(1,1), G=(.8,.6); pair X=(4,sqrt(5)), Y=(4,-sqrt(5)), Z=(4+2/sqrt(5),-sqrt(5)), W=(4+2/sqrt(5),sqrt(5)), T=(4,0), U=(4+2/sqrt(5),-4/sqrt(5)), V=(4+2/sqrt(5),1/sqrt(5)); draw(A--B--C--D--A^^B--F^^E--D^^A--G^^rightanglemark(A,G,F)); draw(X--Y--Z--W--X^^T--V--X^^Y--U); label("A", A, NW); label("B", B, SW); label("C", C, SE); label("D", D, NE); label("E", E, S); label("F", F, N); label("G", G, E); label("X", X, NW); label("Y", Y, SW); label("Z", Z, SE); label("W", W, NE); [/asy] $ \textbf{(A)}\ 4\qquad\textbf{(B)}\ 1+2\sqrt{3}\qquad\textbf{(C)}\ 2\sqrt{5}\qquad\textbf{(D)}\ \frac{8+4\sqrt{3}}{3}\qquad\textbf{(E)}\ 5 $

1976 IMO Shortlist, 3

In a convex quadrilateral (in the plane) with the area of $32 \text{ cm}^{2}$ the sum of two opposite sides and a diagonal is $16 \text{ cm}$. Determine all the possible values that the other diagonal can have.

2020 AMC 10, 12

Triangle $AMC$ is isoceles with $AM = AC$. Medians $\overline{MV}$ and $\overline{CU}$ are perpendicular to each other, and $MV=CU=12$. What is the area of $\triangle AMC?$ [asy] draw((-4,0)--(4,0)--(0,12)--cycle); draw((-2,6)--(4,0)); draw((2,6)--(-4,0)); draw((-2,6)--(2,6)); label("M", (-4,0), W); label("C", (4,0), E); label("A", (0, 12), N); label("V", (2, 6), NE); label("U", (-2, 6), NW); draw(rightanglemark((-2,6),(0,4),(-4,0),17)); [/asy] $\textbf{(A) } 48 \qquad \textbf{(B) } 72 \qquad \textbf{(C) } 96 \qquad \textbf{(D) } 144 \qquad \textbf{(E) } 192$

2003 Argentina National Olympiad, 4

The trapezoid $ABCD$ of bases $AB$ and $CD$, has $\angle A = 90^o, AB = 6, CD = 3$ and $AD = 4$. Let $E, G, H$ be the circumcenters of triangles $ABC, ACD, ABD$, respectively. Find the area of the triangle $EGH$.

2025 AIME, 1

Six points $A, B, C, D, E,$ and $F$ lie in a straight line in that order. Suppose that $G$ is a point not on the line and that $AC=26, BD=22, CE=31, DF=33, AF=73, CG=40,$ and $DG=30.$ Find the area of $\triangle BGE.$