Found problems: 259
1997 Junior Balkan MO, 1
Show that given any 9 points inside a square of side 1 we can always find 3 which form a triangle with area less than $\frac 18$.
[i]Bulgaria[/i]
2007 Purple Comet Problems, 13
Find the circumradius of the triangle with side lengths $104$, $112$, and $120$.
2011 AMC 12/AHSME, 17
Circles with radii $1, 2$, and $3$ are mutually externally tangent. What is the area of the triangle determined by the points of tangency?
$ \textbf{(A)}\ \frac{3}{5} \qquad
\textbf{(B)}\ \frac{4}{5} \qquad
\textbf{(C)}\ 1 \qquad
\textbf{(D)}\ \frac{6}{5} \qquad
\textbf{(E)}\ \frac{4}{3}
$
1961 IMO Shortlist, 2
Let $ a$, $ b$, $ c$ be the sides of a triangle, and $ S$ its area. Prove:
\[ a^{2} \plus{} b^{2} \plus{} c^{2}\geq 4S \sqrt {3}
\]
In what case does equality hold?
2010 Oral Moscow Geometry Olympiad, 3
On the sides $AB$ and $BC$ of triangle $ABC$, points $M$ and $K$ are taken, respectively, so that $S_{KMC} + S_{KAC}=S_{ABC}$. Prove that all such lines $MK$ pass through one point.
2010 Balkan MO Shortlist, G3
The incircle of a triangle $A_0B_0C_0$ touches the sides $B_0C_0,C_0A_0,A_0B_0$ at the points $A,B,C$ respectively, and the incircle of the triangle $ABC$ with incenter $ I$ touches the sides $BC,CA, AB$ at the points $A_1, B_1,C_1$, respectively. Let $\sigma(ABC)$ and $\sigma(A_1B_1C)$ be the areas of the triangles $ABC$ and $A_1B_1C$ respectively. Show that if $\sigma(ABC) = 2 \sigma(A_1B_1C)$ , then the lines $AA_0, BB_0,IC_1$ pass through a common point .
1998 India National Olympiad, 5
Suppose $a,b,c$ are three rela numbers such that the quadratic equation \[ x^2 - (a +b +c )x + (ab +bc +ca) = 0 \] has roots of the form $\alpha + i \beta$ where $\alpha > 0$ and $\beta \not= 0$ are real numbers. Show that
(i) The numbers $a,b,c$ are all positive.
(ii) The numbers $\sqrt{a}, \sqrt{b} , \sqrt{c}$ form the sides of a triangle.
Mathley 2014-15, 2
Given the sequence $(t_n)$ defined as $t_0 = 0$, $t_1 = 6$, $t_{n + 2} = 14t_{n + 1} - t_n$.
Prove that for every number $n \ge 1$, $t_n$ is the area of a triangle whose lengths are all numbers integers.
Dang Hung Thang, University of Natural Sciences, Hanoi National University.
Estonia Open Senior - geometry, 1995.1.3
We call a tetrahedron a "trirectangular " if it has a vertex (we call this is called a "right-angled" vertex) in which the planes of the three sides of the tetrahedron intersect at right angles.
Prove the "three-dimensional Pythagorean theorem":
The square of the area of the opposite face of the "right-angled" vertex of the ""trirectangular " tetrahedron is equal to the sum of the squares of the areas of three other sides of the tetrahedron .
2010 Princeton University Math Competition, 8
Point $P$ is in the interior of $\triangle ABC$. The side lengths of $ABC$ are $AB = 7$, $BC = 8$, $CA = 9$. The three foots of perpendicular lines from $P$ to sides $BC$, $CA$, $AB$ are $D$, $E$, $F$ respectively. Suppose the minimal value of $\frac{BC}{PD} + \frac{CA}{PE} + \frac{AB}{PF}$ can be written as $\frac{a}{b}\sqrt{c}$, where $\gcd(a,b) = 1$ and $c$ is square free, calculate $abc$.
[asy]
size(120); pathpen = linewidth(0.7); pointfontpen = fontsize(10); // pointpen = black;
pair B=(0,0), C=(8,0), A=IP(CR(B,7),CR(C,9)), P = (2,1.6), D=foot(P,B,C), E=foot(P,A,C), F=foot(P,A,B);
D(A--B--C--cycle); D(P--D); D(P--E); D(P--F);
D(MP("A",A,N)); D(MP("B",B)); D(MP("C",C)); D(MP("D",D)); D(MP("E",E,NE)); D(MP("F",F,NW)); D(MP("P",P,SE));
[/asy]
May Olympiad L1 - geometry, 2003.2
The triangle $ABC$ is right in $A$ and $R$ is the midpoint of the hypotenuse $BC$ . On the major leg $AB$ the point $P$ is marked such that $CP = BP$ and on the segment $BP$ the point $Q$ is marked such that the triangle $PQR$ is equilateral. If the area of triangle $ABC$ is $27$, calculate the area of triangle $PQR$ .
2016 BMT Spring, 5
Let $ABC$ be a right triangle with $AB = BC = 2$. Let $ACD$ be a right triangle with angle $\angle DAC = 30$ degrees and $\angle DCA = 60$ degrees. Given that $ABC$ and $ACD$ do not overlap, what is the area of triangle $BCD$?
2014 Taiwan TST Round 1, 2
A triangle has side lengths $a$, $b$, $c$, and the altitudes have lengths $h_a$, $h_b$, $h_c$. Prove that
\[ \left( \frac{a}{h_a} \right)^2
+ \left( \frac{b}{h_b} \right)^2
+ \left( \frac{c}{h_c} \right)^2 \ge 4. \]
1992 Mexico National Olympiad, 3
Given $7$ points inside or on a regular hexagon, show that three of them form a triangle with area $\le 1/6$ the area of the hexagon.
2005 AIME Problems, 15
Triangle $ABC$ has $BC=20$. The incircle of the triangle evenly trisects the median $AD$. If the area of the triangle is $m \sqrt{n}$ where $m$ and $n$ are integers and $n$ is not divisible by the square of a prime, find $m+n$.
1959 AMC 12/AHSME, 43
The sides of a triangle are $25,39,$ and $40$. The diameter of the circumscribed circle is:
$ \textbf{(A)}\ \frac{133}{3}\qquad\textbf{(B)}\ \frac{125}{3}\qquad\textbf{(C)}\ 42\qquad\textbf{(D)}\ 41\qquad\textbf{(E)}\ 40 $
1993 All-Russian Olympiad, 1
The lengths of the sides of a triangle are prime numbers of centimeters. Prove that its area cannot be an integer number of square centimeters.
2008 Argentina National Olympiad, 3
On a circle of center $O$, let $A$ and $B$ be points on the circle such that $\angle AOB = 120^o$. Point $C$ lies on the small arc $AB$ and point $D$ lies on the segment $AB$. Let also $AD = 2, BD = 1$ and $CD = \sqrt2$. Calculate the area of triangle $ABC$.
1992 ITAMO, 2
A convex quadrilateral of area $1$ is given. Prove that there exist four points in the interior or on the sides of the quadrilateral such that each triangle with the vertices in three of these four points has an area greater than or equal to $1/4$.
2020 Czech and Slovak Olympiad III A, 2
The triangle $ABC$ is given. Inside its sides $AB$ and $AC$, the points $X$ and $Y$ are respectively selected Let $Z$ be the intersection of the lines $BY$ and $CX$. Prove the inequality $$[BZX] + [CZY]> 2 [XY Z]$$, where $[DEF]$ denotes the content of the triangle $DEF$.
(David Hruska, Josef Tkadlec)
1978 IMO Shortlist, 4
Let $T_1$ be a triangle having $a, b, c$ as lengths of its sides and let $T_2$ be another triangle having $u, v,w$ as lengths of its sides. If $P,Q$ are the areas of the two triangles, prove that
\[16PQ \leq a^2(-u^2 + v^2 + w^2) + b^2(u^2 - v^2 + w^2) + c^2(u^2 + v^2 - w^2).\]
When does equality hold?
1988 China National Olympiad, 4
(1) Let $a,b,c$ be positive real numbers satisfying $(a^2+b^2+c^2)^2>2(a^4+b^4+c^4)$. Prove that $a,b,c$ can be the lengths of three sides of a triangle respectively.
(2) Let $a_1,a_2,\dots ,a_n$ be $n$ ($n>3$) positive real numbers satisfying $(a_1^2+a_2^2+\dots +a_n^2)^2>(n-1)(a_1^4+ a_2^4+\dots +a_n^4)$. Prove that any three of $a_1,a_2,\dots ,a_n$ can be the lengths of three sides of a triangle respectively.
2008 Bulgarian Autumn Math Competition, Problem 10.2
Let $\triangle ABC$ have $M$ as the midpoint of $BC$ and let $P$ and $Q$ be the feet of the altitudes from $M$ to $AB$ and $AC$ respectively. Find $\angle BAC$ if $[MPQ]=\frac{1}{4}[ABC]$ and $P$ and $Q$ lie on the segments $AB$ and $AC$.
1987 IMO Shortlist, 21
In an acute-angled triangle $ABC$ the interior bisector of angle $A$ meets $BC$ at $L$ and meets the circumcircle of $ABC$ again at $N$. From $L$ perpendiculars are drawn to $AB$ and $AC$, with feet $K$ and $M$ respectively. Prove that the quadrilateral $AKNM$ and the triangle $ABC$ have equal areas.[i](IMO Problem 2)[/i]
[i]Proposed by Soviet Union.[/i]
2023 New Zealand MO, 2
Let $ABCD$ be a parallelogram, and let $P$ be a point on the side $AB$. Let the line through $P$ parallel to $BC$ intersect the diagonal $AC$ at point $Q$. Prove that $$|DAQ|^2 = |PAQ| \times |BCD| ,$$ where $|XY Z|$ denotes the area of triangle $XY Z$.