Found problems: 821
2001 Kazakhstan National Olympiad, 7
Two circles $ w_1 $ and $ w_2 $ intersect at two points $ P $ and $ Q $. The common tangent to $ w_1 $ and $ w_2 $, which is closer to the point $ P $ than to $ Q $, touches these circles at $ A $ and $ B $, respectively. The tangent to $ w_1 $ at the point $ P $ intersects $ w_2 $ at the point $ E $ (different from $ P $), and the tangent to $ w_2 $ at the point $ P $ intersects $ w_1 $ at $ F $ (different from $ P $). Let $ H $ and $ K $ be points on the rays $ AF $ and $ BE $, respectively, such that $ AH = AP $ and $ BK = BP $. Prove that the points $ A $, $ H $, $ Q $, $ K $ and $ B $ lie on the same circle.
1968 IMO Shortlist, 19
We are given a fixed point on the circle of radius $1$, and going from this point along the circumference in the positive direction on curved distances $0, 1, 2, \ldots $ from it we obtain points with abscisas $n = 0, 1, 2, .\ldots$ respectively. How many points among them should we take to ensure that some two of them are less than the distance $\frac 15$ apart ?
2021 Science ON Juniors, 3
Circles $\omega_1$ and $\omega_2$ are externally tangent to each other at $P$. A random line $\ell$ cuts $\omega_1$ at $A$ and $C$ and $\omega_2$ at $B$ and $D$ (points $A,C,B,D$ are in this order on $\ell$). Line $AP$ meets $\omega_2$ again at $E$ and line $BP$ meets $\omega_1$ again at $F$. Prove that the radical axis of circles $(PCD)$ and $(PEF)$ is parallel to $\ell$.
\\ \\
[i](Vlad Robu)[/i]
2011 Indonesia TST, 2
On a line $\ell$ there exists $3$ points $A, B$, and $C$ where $B$ is located between $A$ and $C$. Let $\Gamma_1, \Gamma_2, \Gamma_3$ be circles with $AC, AB$, and $BC$ as diameter respectively; $BD$ is a segment, perpendicular to $\ell$ with $D$ on $\Gamma_1$. Circles $\Gamma_4, \Gamma_5, \Gamma_6$ and $\Gamma_7$ satisfies the following conditions:
$\bullet$ $\Gamma_4$ touches $\Gamma_1, \Gamma_2$, and$ BD$.
$\bullet$ $\Gamma_5$ touches $\Gamma_1, \Gamma_3$, and $BD$.
$\bullet$ $\Gamma_6$ touches $\Gamma_1$ internally, and touches $\Gamma_2$ and $\Gamma_3$ externally.
$\bullet$ $\Gamma_7$ passes through $B$ and the tangent points of $\Gamma_2$ with $\Gamma_6$, and $\Gamma_3$ with $\Gamma_6$.
Show that the circles $\Gamma_4, \Gamma_5$, and $\Gamma_7$ are congruent.
1977 IMO Longlists, 5
A lattice point in the plane is a point both of whose coordinates are integers. Each lattice point has four neighboring points: upper, lower, left, and right. Let $k$ be a circle with radius $r \geq 2$, that does not pass through any lattice point. An interior boundary point is a lattice point lying inside the circle $k$ that has a neighboring point lying outside $k$. Similarly, an exterior boundary point is a lattice point lying outside the circle $k$ that has a neighboring point lying inside $k$. Prove that there are four more exterior boundary points than interior boundary points.
1997 Bundeswettbewerb Mathematik, 3
A semicircle with diameter $AB = 2r$ is divided into two sectors by an arbitrary radius. To each of the sectors a circle is inscribed. These two circles touch A$B$ at $S$ and $T$. Show that $ST \ge 2r(\sqrt{2}-1)$.
Ukrainian TYM Qualifying - geometry, 2018.18
In the acute triangle $ABC$, the altitude $AH$ is drawn. Using segments $AB,BH,CH$ and $AC$ as diameters circles $\omega_1, \omega_2, \omega_3$ and $\omega_4$ are constructed respectively. Besides the point $H$, the circles $\omega_1$ and $\omega_3$ intersect at the point $P,$ and the circles $\omega_2$ and $\omega_4$ interext at point $Q$. The lines $BQ$ and $CP$ intersect at point $N$. Prove that this point lies on the midline of triangle $ABC$, which is parallel to $BC$.
2017 Junior Balkan Team Selection Tests - Romania, 2
Let $A$ be a point outside the circle $\omega$ . The tangents from $A$ touch the circle at $B$ and $C$. Let $P$ be an arbitrary point on extension of $AC$ towards $C$, $Q$ the projection of $C$ onto $PB$ and $E$ the second intersection point of the circumcircle of $ABP$ with the circle $\omega$ . Prove that $\angle PEQ = 2\angle APB$
1969 IMO Longlists, 33
$(GDR 5)$ Given a ring $G$ in the plane bounded by two concentric circles with radii $R$ and $\frac{R}{2}$, prove that we can cover this region with $8$ disks of radius $\frac{2R}{5}$. (A region is covered if each of its points is inside or on the border of some disk.)
2003 Estonia National Olympiad, 1
The picture shows $10$ equal regular pentagons where each two neighbouring pentagons have a common side. The smaller circle is tangent to one side of each pentagon and the larger circle passes through the opposite vertices of these sides. Find the area of the larger circle if the area of the smaller circle is $1$.
[img]https://cdn.artofproblemsolving.com/attachments/0/6/84fe98370868a5cf28d92d4b207ccb00e6eaa3.png[/img]
2021 Sharygin Geometry Olympiad, 16
Let circles $\Omega$ and $\omega$ touch internally at point $A$. A chord $BC$ of $\Omega$ touches $\omega$ at point $K$. Let $O$ be the center of $\omega$. Prove that the circle $BOC$ bisects segment $AK$.
2012 Balkan MO Shortlist, G4
Let $M$ be the point of intersection of the diagonals of a cyclic quadrilateral $ABCD$. Let $I_1$ and $I_2$ are the incenters of triangles $AMD$ and $BMC$, respectively, and let $L$ be the point of intersection of the lines $DI_1$ and $CI_2$. The foot of the perpendicular from the midpoint $T$ of $I_1I_2$ to $CL$ is $N$, and $F$ is the midpoint of $TN$. Let $G$ and $J$ be the points of intersection of the line $LF$ with $I_1N$ and $I_1I_2$, respectively. Let $O_1$ be the circumcenter of triangle $LI_1J$, and let $\Gamma_1$ and $\Gamma_2$ be the circles with diameters $O_1L$ and $O_1J$, respectively. Let $V$ and $S$ be the second points of intersection of $I_1O_1$ with $\Gamma_1$ and $\Gamma_2$, respectively. If $K$ is point where the circles $\Gamma_1$ and $\Gamma_2$ meet again, prove that $K$ is the circumcenter of the triangle $SVG$.
Istek Lyceum Math Olympiad 2016, 2
Let $\omega$ be the semicircle with diameter $PQ$. A circle $k$ is tangent internally to $\omega$ and to segment $PQ$ at $C$. Let $AB$ be the tangent to $K$ perpendicular to $PQ$, with $A$ on $\omega$ and $B$ on the segment $CQ$. Show that $AC$ bisects angle $\angle PAB$
2017 Thailand TSTST, 5
Let $\omega_1, \omega_2$ be two circles with different radii, and let $H$ be the exsimilicenter of the two circles. A point X outside both circles is given. The tangents from $X$ to $\omega_1$ touch $\omega_1$ at $P, Q$, and the tangents from $X$ to $\omega_2$ touch $\omega_2$ at $R, S$. If $PR$ passes through $H$ and is not a common tangent line of $\omega_1, \omega_2$, prove that $QS$ also passes through $H$.
Cono Sur Shortlist - geometry, 2005.G6
Let $AM$ and $AN$ be the tangents to a circle $\Gamma$ drawn from a point $A$ ($M$ and $N$ lie on the circle). A line passing through $A$ cuts $\Gamma$ at $B$ and $C$, with B between $A$ and $C$ such that $AB: BC = 2: 3$. If $P$ is the intersection point of $AB$ and $MN$, calculate the ratio $AP: CP$ .
2024 Mozambican National MO Selection Test, P2
On a sheet divided into squares, each square measuring $2cm$, two circles are drawn such that both circles are inscribed in a square as in the figure below. Determine the minimum distance between the two circles.
2006 Sharygin Geometry Olympiad, 24
a) Two perpendicular rays are drawn through a fixed point $P$ inside a given circle, intersecting the circle at points $A$ and $B$. Find the geometric locus of the projections of $P$ on the lines $AB$.
b) Three pairwise perpendicular rays passing through the fixed point $P$ inside a given sphere intersect the sphere at points $A, B, C$. Find the geometrical locus of the projections $P$ on the $ABC$ plane
Geometry Mathley 2011-12, 4.2
Let $ABC$ be a triangle. $(K)$ is an arbitrary circle tangent to the lines $AC,AB$ at $E, F$ respectively. $(K)$ cuts $BC$ at $M,N$ such that $N$ lies between $B$ and $M$. $FM$ intersects $EN$ at $I$. The circumcircles of triangles $IFN$ and $IEM$ meet each other at $J$ distinct from $I$. Prove that $IJ$ passes through $A$ and $KJ$ is perpendicular to $IJ$.
Trần Quang Hùng
2012 Abels Math Contest (Norwegian MO) Final, 2
(a)Two circles $S_1$ and $S_2$ are placed so that they do not overlap each other, neither completely nor partially. They have centres in $O_1$ and $O_2$, respectively. Further, $L_1$ and $M_1$ are different points on $S_1$ so that $O_2L_1$ and $O_2M_1$ are tangent to $S_1$, and similarly $L_2$ and $M_2$ are different points on $S_2$ so that $O_1L_2$ and $O_1M_2$ are tangent to $S_2$. Show that there exists a unique circle which is tangent to the four line segments $O_2L_1, O_2M_1, O_1L_2$, and $O_1M_2$.
(b) Four circles $S_1, S_2, S_3$ and $S_4$ are placed so that none of them overlap each other, neither completely nor partially. They have centres in $O_1, O_2, O_3$, and $O_4$, respectively. For each pair $(S_i, S_j )$ of circles, with $1 \le i < j \le 4$, we find a circle $S_{ij}$ as in part [b]a[/b]. The circle $S_{ij}$ has radius $R_{ij}$ . Show that $\frac{1}{R_{12}} + \frac{1}{R_{23}}+\frac{1}{R_{34}}+\frac{1}{R_{14}}= 2 \left(\frac{1}{R_{13}} +\frac{1}{R_{24}}\right)$
1992 IMO Shortlist, 20
In the plane let $\,C\,$ be a circle, $\,L\,$ a line tangent to the circle $\,C,\,$ and $\,M\,$ a point on $\,L$. Find the locus of all points $\,P\,$ with the following property: there exists two points $\,Q,R\,$ on $\,L\,$ such that $\,M\,$ is the midpoint of $\,QR\,$ and $\,C\,$ is the inscribed circle of triangle $\,PQR$.
1980 Austrian-Polish Competition, 9
Through the endpoints $A$ and $B$ of a diameter $AB$ of a given circle, the tangents $\ell$ and $m$ have been drawn. Let $C\ne A$ be a point on $\ell$ and let $q_1,q_2$ be two rays from $C$. Ray $q_i$ cuts the circle in $D_i$ and $E_i$ with $D_i$ between $C$ and $E_i, i = 1,2$. Rays $AD_1,AD_2,AE_1,AE_2$ meet $m$ in the respective points $M_1,M_2,N_1,N_2$. Prove that $M_1M_2 = N_1N_2$.
1966 IMO Shortlist, 39
Consider a circle with center $O$ and radius $R,$ and let $A$ and $B$ be two points in the plane of this circle.
[b]a.)[/b] Draw a chord $CD$ of the circle such that $CD$ is parallel to $AB,$ and the point of the intersection $P$ of the lines $AC$ and $BD$ lies on the circle.
[b]b.)[/b] Show that generally, one gets two possible points $P$ ($P_{1}$ and $P_{2}$) satisfying the condition of the above problem, and compute the distance between these two points, if the lengths $OA=a,$ $OB=b$ and $AB=d$ are given.
2009 Postal Coaching, 1
A circle $\Gamma$ and a line $\ell$ which does not intersect $\Gamma$ are given. Suppose $P, Q,R, S$ are variable points on circle $\Gamma$ such that the points $A = PQ\cap RS$ and $B = PS \cap QR$ lie on $\ell$. Prove that the circle on $AB$ as a diameter passes through two fixed points.
2015 Indonesia MO Shortlist, G2
Two circles that are not equal are tangent externally at point $R$. Suppose point $P$ is the intersection of the external common tangents of the two circles. Let $A$ and $B$ are two points on different circles so that $RA$ is perpendicular to $RB$. Show that the line $AB$ passes through $P$.
1984 IMO Shortlist, 14
Let $ABCD$ be a convex quadrilateral with the line $CD$ being tangent to the circle on diameter $AB$. Prove that the line $AB$ is tangent to the circle on diameter $CD$ if and only if the lines $BC$ and $AD$ are parallel.