Found problems: 821
2016 Dutch IMO TST, 4
Let $\Gamma_1$ be a circle with centre $A$ and $\Gamma_2$ be a circle with centre $B$, with $A$ lying on $\Gamma_2$. On $\Gamma_2$ there is a (variable) point $P$ not lying on $AB$. A line through $P$ is a tangent of $\Gamma_1$ at $S$, and it intersects $\Gamma_2$ again in $Q$, with $P$ and $Q$ lying on the same side of $AB$. A different line through $Q$ is tangent to $\Gamma_1$ at $T$. Moreover, let $M$ be the foot of the perpendicular to $AB$ through $P$. Let $N$ be the intersection of $AQ$ and $MT$.
Show that $N$ lies on a line independent of the position of $P$ on $\Gamma_2$.
2010 German National Olympiad, 1
Given two circles $k$ and $l$ which intersect at two points. One of their common tangents touches $k$ at point $K$, while the other common tangent touches $l$ at $L.$ Let $A$ and $B$ be the intersections of the line $KL$ with the circles $k$ and $l$, respectively. Prove that $\overline{AK} = \overline{BL}.$
Geometry Mathley 2011-12, 6.2
Let $ABC$ be an acute triangle, and its altitudes $AX,BY,CZ$ concurrent at $H$. Construct circles $(K_a), (K_b), (K_c)$ circumscribing the triangles $AY Z, BZX, CXY$ . Construct a circle $(K)$ that is internally tangent to all the three circles $(Ka), (K_b), (K_c)$. Prove that $(K)$ is tangent to the circumcircle $(O)$ of the triangle $ABC$.
Đỗ Thanh Sơn
1966 IMO Longlists, 1
Given $n>3$ points in the plane such that no three of the points are collinear. Does there exist a circle passing through (at least) $3$ of the given points and not containing any other of the $n$ points in its interior ?
2010 Peru MO (ONEM), 3
Consider $A, B$ and $C$ three collinear points of the plane such that $B$ is between $A$ and $C$. Let $S$ be the circle of diameter $AB$ and $L$ a line that passes through $C$, which does not intersect $S$ and is not perpendicular to line $AC$. The points $M$ and $N$ are, respectively, the feet of the altitudes drawn from $A$ and $B$ on the line $L$. From $C$ draw the two tangent lines to $S$, where $P$ is the closest tangency point to $L$. Prove that the quadrilateral $MPBC$ is cyclic if and only if the lines $MB$ and $AN$ are perpendicular.
2021 Romania National Olympiad, 1
Let $\mathcal C$ be a circle centered at $O$ and $A\ne O$ be a point in its interior. The perpendicular bisector of the segment $OA$ meets $\mathcal C$ at the points $B$ and $C$, and the lines $AB$ and $AC$ meet $\mathcal C$ again at $D$ and $E$, respectively. Show that the circles $(OBC)$ and $(ADE)$ have the same centre.
[i]Ion Pătrașcu, Ion Cotoi[/i]
Kyiv City MO Juniors Round2 2010+ geometry, 2015.9.4
Circles ${{w} _ {1}}$ and ${{w} _ {2}}$ with centers ${{O} _ {1}}$ and ${{O} _ {2}}$ intersect at points $A$ and $B$, respectively. The line ${{O} _ {1}} {{O} _ {2}}$ intersects ${{w} _ {1}}$ at the point $Q$, which does not lie inside the circle ${{w} _ {2}}$, and ${{w} _ {2}}$ at the point $X$ lying inside the circle ${{w} _ {1} }$. Around the triangle ${{O} _ {1}} AX$ circumscribe a circle ${{w} _ {3}}$ intersecting the circle ${{w} _ {1}}$ for the second time in point $T$. The line $QT$ intersects the circle ${{w} _ {3}}$ at the point $K$, and the line $QB$ intersects ${{w} _ {2}}$ the second time at the point $H$. Prove that
a) points $T, \, \, X, \, \, B$ lie on one line;
b) points $K, \, \, X, \, \, H$ lie on one line.
(Vadym Mitrofanov)
2012 BMT Spring, 6
A circle with diameter $AB$ is drawn, and the point $ P$ is chosen on segment $AB$ so that $\frac{AP}{AB} =\frac{1}{42}$ . Two new circles $a$ and $b$ are drawn with diameters $AP$ and $PB$ respectively. The perpendicular line to $AB$ passing through $ P$ intersects the circle twice at points $S$ and $T$ . Two more circles $s$ and $t$ are drawn with diameters $SP$ and $ST$ respectively. For any circle $\omega$ let $A(\omega)$ denote the area of the circle. What is $\frac{A(s)+A(t)}{A(a)+A(b)}$?
2008 Danube Mathematical Competition, 2
In a triangle $ABC$ let $A_1$ be the midpoint of side $BC$. Draw circles with centers $A, A1$ and radii $AA_1, BC$ respectively and let $A'A''$ be their common chord. Similarly denote the segments $B'B''$ and $C'C''$. Show that lines $A'A'', B'B'''$ and $C'C''$ are concurrent.
1962 Bulgaria National Olympiad, Problem 2
It is given a circle with center $O$ and radius $r$. $AB$ and $MN$ are two diameters. The lines $MB$ and $NB$ are tangent to the circle at the points $M'$ and $N'$ and intersect at point $A$. $M''$ and $N''$ are the midpoints of the segments $AM'$ and $AN'$. Prove that:
(a) the points $M,N,N',M'$ are concyclic.
(b) the heights of the triangle $M''N''B$ intersect in the midpoint of the radius $OA$.
Kvant 2023, M2735
Let $AB$ be a diameter of the circle $\Omega$ with center $O{}$. The points $C, D, X$ and $Y{}$ are chosen on $\Omega$ so that the segments $CX$ and $DX$ intersect the segment $AB$ at points symmetric with respect to $O{}$, and $XY\parallel AB$. Let the lines $AB{}$ and $CD{}$ intersect at the point $E$. Prove that the tangent to $\Omega$ through $Y{}$ passes through $E{}$.
2016 AMC 10, 20
A dilation of the plane—that is, a size transformation with a positive scale factor—sends the circle of radius $2$ centered at $A(2,2)$ to the circle of radius $3$ centered at $A’(5,6)$. What distance does the origin $O(0,0)$, move under this transformation?
$\textbf{(A)}\ 0\qquad\textbf{(B)}\ 3\qquad\textbf{(C)}\ \sqrt{13}\qquad\textbf{(D)}\ 4\qquad\textbf{(E)}\ 5$
2025 Euler Olympiad, Round 2, 2
Points $A$, $B$, $C$, and $D$ lie on a line in that order, and points $E$ and $F$ are located outside the line such that $EA=EB$, $FC=FD$ and $EF \parallel AD$. Let the circumcircles of triangles $ABF$ and $CDE$ intersect at points $P$ and $Q$, and the circumcircles of triangles $ACF$ and $BDE$ intersect at points $M$ and $N$. Prove that the lines $PQ$ and $MN$ pass through the midpoint of segment $EF$.
[i]
Proposed by Giorgi Arabidze, Georgia[/i]
1974 IMO Longlists, 18
Let $A_r,B_r, C_r$ be points on the circumference of a given circle $S$. From the triangle $A_rB_rC_r$, called $\Delta_r$, the triangle $\Delta_{r+1}$ is obtained by constructing the points $A_{r+1},B_{r+1}, C_{r+1} $on $S$ such that $A_{r+1}A_r$ is parallel to $B_rC_r$, $B_{r+1}B_r$ is parallel to $C_rA_r$, and $C_{r+1}C_r$ is parallel to $A_rB_r$. Each angle of $\Delta_1$ is an integer number of degrees and those integers are not multiples of $45$. Prove that at least two of the triangles $\Delta_1,\Delta_2, \ldots ,\Delta_{15}$ are congruent.
2005 Sharygin Geometry Olympiad, 10.5
Two circles of radius $1$ intersect at points $X, Y$, the distance between which is also equal to $1$. From point $C$ of one circle, tangents $CA, CB$ are drawn to the other. Line $CB$ will cross the first circle a second time at point $A'$. Find the distance $AA'$.
2000 Kazakhstan National Olympiad, 2
Given a circle centered at $ O $ and two points $ A $ and $ B $ lying on it. $ A $ and $ B $ do not form a diameter. The point $ C $ is chosen on the circle so that the line $ AC $ divides the segment $ OB $ in half. Let lines $ AB $ and $ OC $ intersect at $ D $, and let lines $ BC $ and $ AO $ intersect at $ F $. Prove that $ AF = CD $.
1985 Tournament Of Towns, (095) 4
The convex set $F$ does not cover a semi-circle of radius $R$.
Is it possible that two sets, congruent to $F$, cover the circle of radius $R$ ?
What if $F$ is not convex?
( N . B . Vasiliev , A. G . Samosvat)
2018 Bosnia and Herzegovina EGMO TST, 1
$a)$ Prove that there exists $5$ nonnegative real numbers with sum equal to $1$, such that no matter how we arrange them on circle, two neighboring numbers exist with product not less than $\frac{1}{9}$
$a)$ Prove that for every $5$ nonnegative real numbers with sum equal to $1$, we can arrange them on circle, such that product of every two neighboring numbers is not greater than $\frac{1}{9}$
1937 Moscow Mathematical Olympiad, 035
Given three points that are not on the same straight line. Three circles pass through each pair of the points so that the tangents to the circles at their intersection points are perpendicular to each other. Construct the circles.
2004 Germany Team Selection Test, 3
Every point with integer coordinates in the plane is the center of a disk with radius $1/1000$.
(1) Prove that there exists an equilateral triangle whose vertices lie in different discs.
(2) Prove that every equilateral triangle with vertices in different discs has side-length greater than $96$.
[i]Radu Gologan, Romania[/i]
[hide="Remark"]
The "> 96" in [b](b)[/b] can be strengthened to "> 124". By the way, part [b](a)[/b] of this problem is the place where I used [url=http://mathlinks.ro/viewtopic.php?t=5537]the well-known "Dedekind" theorem[/url].
[/hide]
1978 Austrian-Polish Competition, 6
We are given a family of discs in the plane, with pairwise disjoint interiors. Each disc is tangent to at least six other discs of the family. Show that the family is infinite.
2023 Yasinsky Geometry Olympiad, 4
Let $C$ be one of the two points of intersection of circles $\omega_1$ and $\omega_2$ with centers at points $O_1$ and $O_2$, respectively. The line $O_1O_2$ intersects the circles at points $A$ and $B$ as shown in the figure. Let $K$ be the second point of intersection of line $AC$ with circle $\omega_2$, $L$ be the second point of intersection of line $BC$ with circle $\omega_1$. Lines $AL$ and $BK$ intersect at point $D$. Prove that $AD=BD$.
(Yurii Biletskyi)
[img]https://cdn.artofproblemsolving.com/attachments/6/4/2cdccb43743fcfcb155e846a0e05ec79ba90e4.png[/img]
1980 IMO Shortlist, 10
Two circles $C_{1}$ and $C_{2}$ are (externally or internally) tangent at a point $P$. The straight line $D$ is tangent at $A$ to one of the circles and cuts the other circle at the points $B$ and $C$. Prove that the straight line $PA$ is an interior or exterior bisector of the angle $\angle BPC$.
Cono Sur Shortlist - geometry, 1993.4
Is it possible to locate in a rectangle of $5$ cm by $ 8$ cm, $51$ circles of diameter $ 1$ cm, so that they don't overlap? Could it be possible for more than $40$ circles ?
2014 Switzerland - Final Round, 10
Let $k$ be a circle with diameter $AB$. Let $C$ be a point on the straight line $AB$, so that $B$ between $A$ and $C$ lies. Let $T$ be a point on $k$ such that $CT$ is a tangent to $k$. Let $l$ be the parallel to $CT$ through $A$ and $D$ the intersection of $l$ and the perpendicular to $AB$ through $T$. Show that the line $DB$ bisects segment $CT$.