Found problems: 821
2002 Junior Balkan Team Selection Tests - Moldova, 10
The circles $C_1$ and $C_2$ intersect at the distinct points $M$ and $N$. Points $A$ and $B$ belong respectively to the circles $C_1$ and $C_2$ so that the chords $[MA]$ and $[MB]$ are tangent at point $M$ to the circles $C_2$ and $C_1$, respectively. To prove it that the angles $\angle MNA$ and $\angle MNB$ are equal.
2017 Dutch Mathematical Olympiad, 5
The eight points below are the vertices and the midpoints of the sides of a square. We would like to draw a number of circles through the points, in such a way that each pair of points lie on (at least) one of the circles.
Determine the smallest number of circles needed to do this.
[asy]
unitsize(1 cm);
dot((0,0));
dot((1,0));
dot((2,0));
dot((0,1));
dot((2,1));
dot((0,2));
dot((1,2));
dot((2,2));
[/asy]
2012 India Regional Mathematical Olympiad, 7
On the extension of chord $AB$ of a circle centroid at $O$ a point $X$ is taken and tangents $XC$ and $XD$ to the circle are drawn from it with $C$ and $D$ lying on the circle, let $E$ be the midpoint of the line segment $CD$. If $\angle OEB = 140^o$ then determine with proof the magnitude of $\angle AOB$.
2017 Kyiv Mathematical Festival, 3
A point $C$ is marked on a chord $AB$ of a circle $\omega.$ Let $D$ be the midpoint of $AC,$ and $O$ be the center of the circle $\omega.$ The circumcircle of the triangle $BOD$ intersects the circle $\omega$ again at point $E$ and the straight line $OC$ again at point $F.$ Prove that the circumcircle of the triangle $CEF$ touches $AB.$
Estonia Open Junior - geometry, 2004.1.2
Diameter $AB$ is drawn to a circle with radius $1$. Two straight lines $s$ and $t$ touch the circle at points $A$ and $B$, respectively. Points $P$ and $Q$ are chosen on the lines $s$ and $t$, respectively, so that the line $PQ$ touches the circle. Find the smallest possible area of the quadrangle $APQB$.
1949-56 Chisinau City MO, 45
Determine the locus of points, from which the tangent segments to two given circles are equal.
1975 Chisinau City MO, 89
A closed line on a plane is such that any quadrangle inscribed in it has the sum of opposite angles equal to $180^o$. Prove that this line is a circle.
1954 Poland - Second Round, 1
The cross-section of a ball bearing consists of two concentric circles $ C $ and $ C_1 $, between which there are $ n $ small circles $ k_1, k_2, \ldots, k_n $, each of which is tangent to the two adjacent circles and to both circles $ C $ and $ C_1 $. Given the radius $ r $ of the inner circle $ C $ and a natural number $ n $, calculate the radius $ x $ of circle $ C_2 $ passing through the points of tangency of circles $ k_1, k_2, \ldots, k_n $ and the sum $ s $ of the lengths of the arcs of circles $ k_1, k_2, \ldots, k_n $ that lie outside circle $ C_2 $.
1995 Belarus Team Selection Test, 2
Circles $S,S_1,S_2$ are given in a plane. $S_1$ and $S_2$ touch each other externally, and both touch $S$ internally at $A_1$ and $A_2$ respectively. The common internal tangent to $S_1$ and $S_2$ meets $S$ at $P$ and $Q.$ Let $B_1$ and $B_2$ be the intersections of $PA_1$ and $PA_2$ with $S_1$ and $S_2$, respectively. Prove that $B_1B_2$ is a common tangent to $S_1,S_2$
1979 IMO Longlists, 67
A circle $C$ with center $O$ on base $BC$ of an isosceles triangle $ABC$ is tangent to the equal sides $AB,AC$. If point $P$ on $AB$ and point $Q$ on $AC$ are selected such that $PB \times CQ = (\frac{BC}{2})^2$, prove that line segment $PQ$ is tangent to circle $C$, and prove the converse.
1969 IMO Shortlist, 3
$(BEL 3)$ Construct the circle that is tangent to three given circles.
2013 Dutch IMO TST, 3
Fix a triangle $ABC$. Let $\Gamma_1$ the circle through $B$, tangent to edge in $A$. Let $\Gamma_2$ the circle through C tangent to edge $AB$ in $A$. The second intersection of $\Gamma_1$ and $\Gamma_2$ is denoted by $D$. The line $AD$ has second intersection $E$ with the circumcircle of $\vartriangle ABC$. Show that $D$ is the midpoint of the segment $AE$.
1959 AMC 12/AHSME, 32
The length $l$ of a tangent, drawn from a point $A$ to a circle, is $\frac43$ of the radius $r$. The (shortest) distance from $A$ to the circle is:
$ \textbf{(A)}\ \frac{1}{2}r \qquad\textbf{(B)}\ r\qquad\textbf{(C)}\ \frac{1}{2}l\qquad\textbf{(D)}\ \frac23l \qquad\textbf{(E)}\ \text{a value between r and l.} $
2016 AIME Problems, 15
Circles $\omega_1$ and $\omega_2$ intersect at points $X$ and $Y$. Line $\ell$ is tangent to $\omega_1$ and $\omega_2$ at $A$ and $B$, respectively, with line $AB$ closer to point $X$ than to $Y$. Circle $\omega$ passes through $A$ and $B$ intersecting $\omega_1$ again at $D \neq A$ and intersecting $\omega_2$ again at $C \neq B$. The three points $C$, $Y$, $D$ are collinear, $XC = 67$, $XY = 47$, and $XD = 37$. Find $AB^2$.
2018 Bundeswettbewerb Mathematik, 3
Let $H$ be the orthocenter of the acute triangle $ABC$. Let $H_a$ be the foot of the perpendicular from $A$ to $BC$ and let the line through $H$ parallel to $BC$ intersect the circle with diameter $AH_a$ in the points $P_a$ and $Q_a$. Similarly, we define the points $P_b, Q_b$ and $P_c,Q_c$.
Show that the six points $P_a,Q_a,P_b,Q_b,P_c,Q_c$ lie on a common circle.
2015 Iran Geometry Olympiad, 5
Do there exist $6$ circles in the plane such that every circle passes through centers of exactly $3$ other circles?
by Morteza Saghafian
2005 Estonia Team Selection Test, 1
On a plane, a line $\ell$ and two circles $c_1$ and $c_2$ of different radii are given such that $\ell$ touches both circles at point $P$. Point $M \ne P$ on $\ell$ is chosen so that the angle $Q_1MQ_2$ is as large as possible where $Q_1$ and $Q_2$ are the tangency points of the tangent lines drawn from $M$ to $c_i$ and $c_2$, respectively, differing from $\ell$ . Find $\angle PMQ_1 + \angle PMQ_2$·
2012 Tournament of Towns, 4
A circle touches sides $AB, BC, CD$ of a parallelogram $ABCD$ at points $K, L, M$ respectively. Prove that the line $KL$ bisects the height of the parallelogram drawn from the vertex $C$ to $AB$.
2020 Iran MO (3rd Round), 2
For each $n$ find the number of ways one can put the numbers $\{1,2,3,...,n\}$ numbers on the circle, such that if for any $4$ numbers $a,b,c,d$ where $n|a+b-c-d$. The segments joining $a,b$ and $c,d$ do not meet inside the circle. (Two ways are said to be identical , if one can be obtained from rotaiting the other)
1966 IMO Longlists, 39
Consider a circle with center $O$ and radius $R,$ and let $A$ and $B$ be two points in the plane of this circle.
[b]a.)[/b] Draw a chord $CD$ of the circle such that $CD$ is parallel to $AB,$ and the point of the intersection $P$ of the lines $AC$ and $BD$ lies on the circle.
[b]b.)[/b] Show that generally, one gets two possible points $P$ ($P_{1}$ and $P_{2}$) satisfying the condition of the above problem, and compute the distance between these two points, if the lengths $OA=a,$ $OB=b$ and $AB=d$ are given.
1998 Mexico National Olympiad, 2
Rays $l$ and $m$ forming an angle of $a$ are drawn from the same point. Let $P$ be a fixed point on $l$. For each circle $C$ tangent to $l$ at $P$ and intersecting $m$ at $Q$ and $R$, let $T$ be the intersection point of the bisector of angle $QPR$ with $C$. Describe the locus of $T$ and justify your answer.
2010 Contests, 4
The two circles $\Gamma_1$ and $\Gamma_2$ intersect at $P$ and $Q$. The common tangent that's on the same side as $P$, intersects the circles at $A$ and $B$,respectively. Let $C$ be the second intersection with $\Gamma_2$ of the tangent to $\Gamma_1$ at $P$, and let $D$ be the second intersection with $\Gamma_1$ of the tangent to $\Gamma_2$ at $Q$. Let $E$ be the intersection of $AP$ and $BC$, and let $F$ be the intersection of $BP$ and $AD$. Let $M$ be the image of $P$ under point reflection with respect to the midpoint of $AB$. Prove that $AMBEQF$ is a cyclic hexagon.
2003 Denmark MO - Mohr Contest, 4
Georg and his mother love pizza. They buy a pizza shaped as an equilateral triangle. Georg demands to be allowed to divide the pizza by a straight cut and then make the first choice. The mother accepts this reluctantly, but she wants to choose a point of the pizza through which the cut must pass. Determine the largest fraction of the pizza which the mother is certain to get by this procedure.
1973 IMO Shortlist, 2
Given a circle $K$, find the locus of vertices $A$ of parallelograms $ABCD$ with diagonals $AC \leq BD$, such that $BD$ is inside $K$.
2004 Germany Team Selection Test, 1
Let $D_1$, $D_2$, ..., $D_n$ be closed discs in the plane. (A closed disc is the region limited by a circle, taken jointly with this circle.) Suppose that every point in the plane is contained in at most $2003$ discs $D_i$. Prove that there exists a disc $D_k$ which intersects at most $7\cdot 2003 - 1 = 14020$ other discs $D_i$.