This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 241

2003 Argentina National Olympiad, 4

The trapezoid $ABCD$ of bases $AB$ and $CD$, has $\angle A = 90^o, AB = 6, CD = 3$ and $AD = 4$. Let $E, G, H$ be the circumcenters of triangles $ABC, ACD, ABD$, respectively. Find the area of the triangle $EGH$.

2014 Contests, 1

In triangle $ABC, \angle A= 45^o, BH$ is the altitude, the point $K$ lies on the $AC$ side, and $BC = CK$. Prove that the center of the circumscribed circle of triangle $ABK$ coincides with the center of an excircle of triangle $BCH$.

1970 Spain Mathematical Olympiad, 6

Given a circle $\gamma$ and two points $A$ and $B$ in its plane. By $B$ passes a variable secant that intersects $\gamma$ at two points $M$ and $N$. Determine the locus of the centers of the circles circumscribed to the triangle $AMN$.

Croatia MO (HMO) - geometry, 2018.3

Let $k$ be a circle centered at $O$. Let $\overline{AB}$ be a chord of that circle and $M$ its midpoint. Tangent on $k$ at points $A$ and $B$ intersect at $T$. The line $\ell$ goes through $T$, intersect the shorter arc $AB$ at the point $C$ and the longer arc $AB$ at the point $D$, so that $|BC| = |BM|$. Prove that the circumcenter of the triangle $ADM$ is the reflection of $O$ across the line $AD$

2019 Dutch Mathematical Olympiad, 3

Points $A, B$, and $C$ lie on a circle with centre $M$. The reflection of point $M$ in the line $AB$ lies inside triangle $ABC$ and is the intersection of the angle bisectors of angles $A$ and $B$. Line $AM$ intersects the circle again in point $D$. Show that $|CA| \cdot |CD| = |AB| \cdot |AM|$.

2019 Irish Math Olympiad, 5

Let $M$ be a point on the side $BC$ of triangle $ABC$ and let $P$ and $Q$ denote the circumcentres of triangles $ABM$ and $ACM$ respectively. Let $L$ denote the point of intersection of the extended lines $BP$ and $CQ$ and let $K$ denote the reflection of $L$ through the line $PQ$. Prove that $M, P, Q$ and $K$ all lie on the same circle.

2006 Estonia Team Selection Test, 2

The center of the circumcircle of the acute triangle $ABC$ is $O$. The line $AO$ intersects $BC$ at $D$. On the sides $AB$ and $AC$ of the triangle, choose points $E$ and $F$, respectively, so that the points $A, E, D, F$ lie on the same circle. Let $E'$ and $F'$ projections of points $E$ and $F$ on side $BC$ respectively. Prove that length of the segment $E'F'$ does not depend on the position of points $E$ and $F$.

2016 Middle European Mathematical Olympiad, 3

Let $ABC$ be an acute triangle such that $\angle BAC > 45^{\circ}$ with circumcenter $O$. A point $P$ is chosen inside triangle $ABC$ such that $A, P, O, B$ are concyclic and the line $BP$ is perpendicular to the line $CP$. A point $Q$ lies on the segment $BP$ such that the line $AQ$ is parallel to the line $PO$. Prove that $\angle QCB = \angle PCO$.

2014 Junior Balkan Team Selection Tests - Romania, 3

Let $ABC$ be an acute triangle and $D \in (BC) , E \in (AD)$ be mobile points. The circumcircle of triangle $CDE$ meets the median from $C$ of the triangle $ABC$ at $F$ Prove that the circumcenter of triangle $AEF$ lies on a fixed line.

Estonia Open Senior - geometry, 2012.1.3

Let $ABC$ be a triangle with median AK. Let $O$ be the circumcenter of the triangle $ABK$. a) Prove that if $O$ lies on a midline of the triangle $ABC$, but does not coincide with its endpoints, then $ABC$ is a right triangle. b) Is the statement still true if $O$ can coincide with an endpoint of the midsegment?

2000 Tournament Of Towns, 2

The chords $AC$ and $BD$ of a, circle with centre $O$ intersect at the point $K$. The circumcentres of triangles $AKB$ and $CKD$ are $M$ and $N$ respectively. Prove that $OM = KN$. (A Zaslavsky )

2009 Sharygin Geometry Olympiad, 5

Rhombus $CKLN$ is inscribed into triangle $ABC$ in such way that point $L$ lies on side $AB$, point $N$ lies on side $AC$, point $K$ lies on side $BC$. $O_1, O_2$ and $O$ are the circumcenters of triangles $ACL, BCL$ and $ABC$ respectively. Let $P$ be the common point of circles $ANL$ and $BKL$, distinct from $L$. Prove that points $O_1, O_2, O$ and $P$ are concyclic. (D.Prokopenko)

2019 Costa Rica - Final Round, G2

Let $H$ be the orthocenter and $O$ the circumcenter of the acute triangle $\vartriangle ABC$. The circle with center $H$ and radius $HA$ intersects the lines $AC$ and $AB$ at points $P$ and $Q$, respectively. Let point $O$ be the orthocenter of triangle $\vartriangle APQ$, determine the measure of $\angle BAC$.

2019 Girls in Mathematics Tournament, 2

Let $ABC$ be a right triangle with hypotenuse $BC$ and center $I$. Let bisectors of the angles $\angle B$ and $\angle C$ intersect the sides $AC$ and $AB$ in$ D$ and $E$, respectively. Let $P$ and $Q$ be the feet of the perpendiculars of the points $D$ and $E$ on the side $BC$. Prove that $I$ is the circumcenter of $APQ$.

2019 Final Mathematical Cup, 1

Let $ABC$ be an acute triangle with $AB<AC<BC$ and let $D$ be a point on it's extension of $BC$ towards $C$. Circle $c_1$, with center $A$ and radius $AD$, intersects lines $AC,AB$ and $CB$ at points $E,F$, and $G$ respectively. Circumscribed circle $c_2$ of triangle $AFG$ intersects again lines $FE,BC,GE$ and $DF$ at points $J,H,H' $ and $J'$ respectively. Circumscribed circle $c_3$ of triangle $ADE$ intersects again lines $FE,BC,GE$ and $DF$ at points $I,K,K' $ and $I' $ respectively. Prove that the quadrilaterals $HIJK$ and $H'I'J'K '$ are cyclic and the centers of their circumscribed circles coincide. by Evangelos Psychas, Greece

2011 Tournament of Towns, 1

$P$ and $Q$ are points on the longest side $AB$ of triangle $ABC$ such that $AQ = AC$ and $BP = BC$. Prove that the circumcentre of triangle $CPQ$ coincides with the incentre of triangle $ABC$.

KoMaL A Problems 2023/2024, A. 878

Let point $A$ be one of the intersections of circles $c$ and $k$. Let $X_1$ and $X_2$ be arbitrary points on circle $c$. Let $Y_i$ denote the intersection of line $AX_i$ and circle $k$ for $i=1,2$. Let $P_1$, $P_2$ and $P_3$ be arbitrary points on circle $k$, and let $O$ denote the center of circle $k$. Let $K_{ij}$ denote the center of circle $(X_iY_iP_j)$ for $i=1,2$ and $j=1,2,3$. Let $L_j$ denote the center of circle $(OK_{1j}K_{2j})$ for $j=1,2,3$. Prove that points $L_1$, $L_2$ and $L_3$ are collinear. Proposed by [i]Vilmos Molnár-Szabó[/i], Budapest

2006 Oral Moscow Geometry Olympiad, 6

In an acute-angled triangle, one of the angles is $60^o$. Prove that the line passing through the center of the circumcircle and the intersection point of the medians of the triangle cuts off an equilateral triangle from it. (A. Zaslavsky)

2022 Kyiv City MO Round 1, Problem 3

Let $H$ and $O$ be the orthocenter and the circumcenter of the triangle $ABC$. Line $OH$ intersects the sides $AB, AC$ at points $X, Y$ correspondingly, so that $H$ belongs to the segment $OX$. It turned out that $XH = HO = OY$. Find $\angle BAC$. [i](Proposed by Oleksii Masalitin)[/i]

Brazil L2 Finals (OBM) - geometry, 2004.5

Let $D$ be the midpoint of the hypotenuse $AB$ of a right triangle $ABC$. Let $O_1$ and $O_2$ be the circumcenters of the $ADC$ and $DBC$ triangles, respectively. a) Prove that $\angle O_1DO_2$ is right. b) Prove that $AB$ is tangent to the circle of diameter $O_1O_2$ .

2024 Yasinsky Geometry Olympiad, 2

Let $I$ be the incenter and $O$ be the circumcenter of triangle $ABC,$ where $\angle A < \angle B < \angle C.$ Points $P$ and $Q$ are such that $AIOP$ and $BIOQ$ are isosceles trapezoids ($AI \parallel OP,$ $BI \parallel OQ$). Prove that $CP = CQ.$ [i]Proposed by Volodymyr Brayman and Matthew Kurskyi[/i]

2021 Final Mathematical Cup, 2

Let $ABC$ be an acute triangle, where $AB$ is the smallest side and let $D$ be the midpoint of $AB$. Let $P$ be a point in the interior of the triangle $ABC$ such that $\angle CAP = \angle CBP = \angle ACB$. From the point $P$, we draw perpendicular lines on $BC$ and $AC$ where the intersection point with $BC$ is $M$, and with $AC$ is $N$ . Through the point $M$ we draw a line parallel to $AC$, and through $N$ parallel to $BC$. These lines intercept at the point $K$. Prove that $D$ is the center of the circumscribed circle for the triangle $MNK$.

2017 Abels Math Contest (Norwegian MO) Final, 4

Let $a > 0$ and $0 < \alpha <\pi$ be given. Let $ABC$ be a triangle with $BC = a$ and $\angle BAC = \alpha$ , and call the cicumcentre $O$, and the orthocentre $H$. The point $P$ lies on the ray from $A$ through $O$. Let $S$ be the mirror image of $P$ through $AC$, and $T$ the mirror image of $P$ through $AB$. Assume that $SATH$ is cyclic. Show that the length $AP$ depends only on $a$ and $\alpha$.

2002 Mexico National Olympiad, 2

$ABCD$ is a parallelogram. $K$ is the circumcircle of $ABD$. The lines $BC$ and $CD$ meet $K$ again at $E$ and $F$. Show that the circumcenter of $CEF$ lies on $K$.

Ukrainian TYM Qualifying - geometry, 2011.5

The circle $\omega_0$ touches the line at point A. Let $R$ be a given positive number. We consider various circles $\omega$ of radius $R$ that touch a line $\ell$ and have two different points in common with the circle $\omega_0$. Let $D$ be the touchpoint of the circle $\omega_0$ with the line $\ell$, and the points of intersection of the circles $\omega$ and $\omega_0$ are denoted by $B$ and $C$ (Assume that the distance from point $B$ to the line $\ell$ is greater than the distance from point $C$ to this line). Find the locus of the centers of the circumscribed circles of all such triangles $ABD$.