This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3882

2012 Grigore Moisil Intercounty, 3

Let $ \Delta ABC$ be a triangle, with $ m(\angle A)=90^{\circ}$ and $ m(\angle B)=30^{\circ}.$ If $M$ is the middle of $[AB],$ $N$ is the middle of $[BC],$ and $P\in[BC],\ Q\in[MN],$ such that \[\frac{PB}{PC}=4\cdot\frac{QM}{QN}+3,\] prove that $ \Delta APQ$ is an equilateral triangle. [b]Author: MARIN BANCOȘ[/b] [b]Regional Mathematical Contest GRIGORE MOISIL, Romania, Baia Mare, 24.03.2012, 7th grade[/b]

2001 Canada National Olympiad, 3

Let $ABC$ be a triangle with $AC > AB$. Let $P$ be the intersection point of the perpendicular bisector of $BC$ and the internal angle bisector of $\angle{A}$. Construct points $X$ on $AB$ (extended) and $Y$ on $AC$ such that $PX$ is perpendicular to $AB$ and $PY$ is perpendicular to $AC$. Let $Z$ be the intersection point of $XY$ and $BC$. Determine the value of $\frac{BZ}{ZC}$.

2022 Latvia Baltic Way TST, P10

Let $\triangle ABC$ be a triangle satisfying $AB<AC$. Let $D$ be a point on the segment $AC$ such that $AB=AD$. Let then $X$ be a point on the segment $BC$ satisfying $BD^2=BX\cdot BC$. Let the circumcircles of the triangles $\triangle XDC$ and $\triangle ABC$ intersect at $M \neq C$. Prove that the line $MD$ goes through the midpoint of the arc $\widehat{BAC}$ of the circumcircle of $\triangle ABC$.

1994 National High School Mathematics League, 3

Circumcircle of $\triangle ABC$ is $\odot O$, incentre of $\triangle ABC$ is $I$. $\angle B=60^{\circ}.\angle A<\angle C$. Bisector of outer angle $\angle A$ intersects $\odot O$ at $E$. Prove: [b](a)[/b] $IO=AE$. [b](b)[/b] The radius of $\odot O$ is $R$, then $2R<IO+IA+IC<(1+\sqrt3)R$.

2010 Paraguay Mathematical Olympiad, 5

In a triangle $ABC$, let $D$, $E$ and $F$ be the feet of the altitudes from $A$, $B$ and $C$ respectively. Let $D'$, $E'$ and $F'$ be the second intersection of lines $AD$, $BE$ and $CF$ with the circumcircle of $ABC$. Show that the triangles $DEF$ and $D'E'F'$ are similar.

1982 IMO Longlists, 13

A regular $n$-gonal truncated pyramid is circumscribed around a sphere. Denote the areas of the base and the lateral surfaces of the pyramid by $S_1, S_2$, and $S$, respectively. Let $\sigma$ be the area of the polygon whose vertices are the tangential points of the sphere and the lateral faces of the pyramid. Prove that \[\sigma S = 4S_1S_2 \cos^2 \frac{\pi}{n}.\]

2002 Olympic Revenge, 2

\(ABCD\) is a inscribed quadrilateral. \(P\) is the intersection point of its diagonals. \(O\) is its circumcenter. \(\Gamma\) is the circumcircle of \(ABO\). \(\Delta\) is the circumcircle of \(CDO\). \(M\) is the midpoint of arc \(AB\) on \(\Gamma\) who doesn't contain \(O\). \(N\) is the midpoint of arc \(CD\) on \(\Delta\) who doesn't contain \(O\). Show that \(M,N,P\) are collinear.

2014 Korea - Final Round, 2

Let $ABC$ be a isosceles triangle with $ AC = BC > AB$. Let $ E, F $ be the midpoints of segments $ AC, AB$, and let $l$ be the perpendicular bisector of $AC$. Let $ l $ meets $ AB$ at $K$, the line through $B$ parallel to $KC$ meets $AC$ at point $L$, and line $FL$ meets $ l$ at $W$. Let $ P $ be a point on segment $BF$. Let $H$ be the orthocenter of triangle $ACP$ and line $BH$ and $CP$ meet at point $J$. Line $FJ$ meets $l$ at $M$. Prove that $ AW = PW $ if and only if $B$ lies on the circumcircle of $EFM$.

2021 Brazil National Olympiad, 3

Let $ABC$ be a scalene triangle and $\omega$ is your incircle. The sides $BC,CA$ and $AB$ are tangents to $\omega$ in $X,Y,Z$ respectively. Let $M$ be the midpoint of $BC$ and $D$ is the intersection point of $BC$ with the angle bisector of $\angle BAC$. Prove that $\angle BAX=\angle MAC$ if and only if $YZ$ passes by the midpoint of $AD$.

2013 NIMO Summer Contest, 12

In $\triangle ABC$, $AB = 40$, $BC = 60$, and $CA = 50$. The angle bisector of $\angle A$ intersects the circumcircle of $\triangle ABC$ at $A$ and $P$. Find $BP$. [i]Proposed by Eugene Chen[/i]

2015 Benelux, 2

Let $ABC$ be an acute triangle with circumcentre $O$. Let $\mathit{\Gamma}_B$ be the circle through $A$ and $B$ that is tangent to $AC$, and let $\mathit{\Gamma}_C$ be the circle through $A$ and $C$ that is tangent to $AB$. An arbitrary line through $A$ intersects $\mathit{\Gamma}_B$ again in $X$ and $\mathit{\Gamma}_C$ again in $Y$. Prove that $|OX|=|OY|$.

2013 ELMO Shortlist, 9

Let $ABCD$ be a cyclic quadrilateral inscribed in circle $\omega$ whose diagonals meet at $F$. Lines $AB$ and $CD$ meet at $E$. Segment $EF$ intersects $\omega$ at $X$. Lines $BX$ and $CD$ meet at $M$, and lines $CX$ and $AB$ meet at $N$. Prove that $MN$ and $BC$ concur with the tangent to $\omega$ at $X$. [i]Proposed by Allen Liu[/i]

2018 Estonia Team Selection Test, 7

Let $AD$ be the altitude $ABC$ of an acute triangle. On the line $AD$ are chosen different points $E$ and $F$ so that $|DE |= |DF|$ and point $E$ is in the interior of triangle $ABC$. The circumcircle of triangle $BEF$ intersects $BC$ and $BA$ for second time at points $K$ and $M$ respectively. The circumcircle of the triangle $CEF$ intersects the $CB$ and $CA$ for the second time at points $L$ and $N$ respectively. Prove that the lines $AD, KM$ and $LN$ intersect at one point.

2017 Ukrainian Geometry Olympiad, 3

On the hypotenuse $AB$ of a right triangle $ABC$, we denote a point $K$ such that $BK = BC$. Let $P$ be a point on the perpendicular from the point $K$ to line $CK$, equidistant from the points $K$ and $B$. Let $L$ be the midpoint of $CK$. Prove that line $AP$ is tangent to the circumcircle of $\Delta BLP$.

2013 Saudi Arabia Pre-TST, 3.4

$\vartriangle ABC$ is a triangle with $AB < BC, \Gamma$ its circumcircle, $K$ the midpoint of the minor arc $CA$ of the circle $C$ and $T$ a point on $\Gamma$ such that $KT$ is perpendicular to $BC$. If $A',B'$ are the intouch points of the incircle of $\vartriangle ABC$ with the sides $BC,AC$, prove that the lines $AT,BK,A'B'$ are concurrent.

2012 IMO, 5

Let $ABC$ be a triangle with $\angle BCA=90^{\circ}$, and let $D$ be the foot of the altitude from $C$. Let $X$ be a point in the interior of the segment $CD$. Let $K$ be the point on the segment $AX$ such that $BK=BC$. Similarly, let $L$ be the point on the segment $BX$ such that $AL=AC$. Let $M$ be the point of intersection of $AL$ and $BK$. Show that $MK=ML$. [i]Proposed by Josef Tkadlec, Czech Republic[/i]

2003 Kazakhstan National Olympiad, 6

Let the point $ B $ lie on the circle $ S_1 $ and let the point $ A $, other than the point $ B $, lie on the tangent to the circle $ S_1 $ passing through the point $ B $. Let a point $ C $ be chosen outside the circle $ S_1 $, so that the segment $ AC $ intersects $ S_1 $ at two different points. Let the circle $ S_2 $ touch the line $ AC $ at the point $ C $ and the circle $ S_1 $ at the point $ D $, on the opposite side from the point $ B $ with respect to the line $ AC $. Prove that the center of the circumcircle of triangle $ BCD $ lies on the circumcircle of triangle $ ABC $.

2010 APMO, 4

Let $ABC$ be an acute angled triangle satisfying the conditions $AB>BC$ and $AC>BC$. Denote by $O$ and $H$ the circumcentre and orthocentre, respectively, of the triangle $ABC.$ Suppose that the circumcircle of the triangle $AHC$ intersects the line $AB$ at $M$ different from $A$, and the circumcircle of the triangle $AHB$ intersects the line $AC$ at $N$ different from $A.$ Prove that the circumcentre of the triangle $MNH$ lies on the line $OH$.

2010 ELMO Shortlist, 6

Let $ABC$ be a triangle with circumcircle $\Omega$. $X$ and $Y$ are points on $\Omega$ such that $XY$ meets $AB$ and $AC$ at $D$ and $E$, respectively. Show that the midpoints of $XY$, $BE$, $CD$, and $DE$ are concyclic. [i]Carl Lian.[/i]

2013 Sharygin Geometry Olympiad, 14

Let $M$, $N$ be the midpoints of diagonals $AC$, $BD$ of a right-angled trapezoid $ABCD$ ($\measuredangle A=\measuredangle D = 90^\circ$). The circumcircles of triangles $ABN$, $CDM$ meet the line $BC$ in the points $Q$, $R$. Prove that the distances from $Q$, $R$ to the midpoint of $MN$ are equal.

2019 Estonia Team Selection Test, 2

In an acute-angled triangle $ABC$, the altitudes intersect at point $H$, and point $K$ is the foot of the altitude drawn from the vertex $A$. Circle $c$ passing through points $A$ and $K$ intersects sides $AB$ and $AC$ at points $M$ and $N$, respectively. The line passing through point $A$ and parallel to line $BC$ intersects the circumcircles of triangles $AHM$ and $AHN$ for second time, respectively, at points $X$ and $Y$. Prove that $ | X Y | = | BC |$.

2004 South africa National Olympiad, 4

Let $A_1$ and $B_1$ be two points on the base $AB$ of isosceles triangle $ABC$ (with $\widehat{C}>60^\circ$) such that $\widehat{A_1CB_1}=\widehat{BAC}$. A circle externally tangent to the circumcircle of triangle $\triangle A_1B_1C$ is tangent also to rays $CA$ and $CB$ at points $A_2$ and $B_2$ respectively. Prove that $A_2B_2=2AB$.

2013 India PRMO, 9

In a triangle $ABC$, let $H, I$ and $O$ be the orthocentre, incentre and circumcentre, respectively. If the points $B, H, I, C$ lie on a circle, what is the magnitude of $\angle BOC$ in degrees?

2012 Iran MO (3rd Round), 4

The incircle of triangle $ABC$ for which $AB\neq AC$, is tangent to sides $BC,CA$ and $AB$ in points $D,E$ and $F$ respectively. Perpendicular from $D$ to $EF$ intersects side $AB$ at $X$, and the second intersection point of circumcircles of triangles $AEF$ and $ABC$ is $T$. Prove that $TX\perp TF$. [i]Proposed By Pedram Safaei[/i]

2007 District Olympiad, 1

Point $O$ is the intersection of the perpendicular bisectors of the sides of the triangle $\vartriangle ABC$ . Let $D$ be the intersection of the line $AO$ with the segment $[BC]$. Knowing that $OD = BD = \frac 13 BC$, find the measures of the angles of the triangle $\vartriangle ABC$.