This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3882

1994 Irish Math Olympiad, 2

Let $ A,B,C$ be collinear points on the plane with $ B$ between $ A$ and $ C$. Equilateral triangles $ ABD,BCE,CAF$ are constructed with $ D,E$ on one side of the line $ AC$ and $ F$ on the other side. Prove that the centroids of the triangles are the vertices of an equilateral triangle, and that the centroid of this triangle lies on the line $ AC$.

2010 JBMO Shortlist, 4

Let $AL$ and $BK$ be angle bisectors in the non-isosceles triangle $ABC$ ($L$ lies on the side $BC$, $K$ lies on the side $AC$). The perpendicular bisector of $BK$ intersects the line $AL$ at point $M$. Point $N$ lies on the line $BK$ such that $LN$ is parallel to $MK$. Prove that $LN = NA$.

2009 Mediterranean Mathematics Olympiad, 2

Let $ABC$ be a triangle with $90^\circ \ne \angle A \ne 135^\circ$. Let $D$ and $E$ be external points to the triangle $ABC$ such that $DAB$ and $EAC$ are isoscele triangles with right angles at $D$ and $E$. Let $F = BE \cap CD$, and let $M$ and $N$ be the midpoints of $BC$ and $DE$, respectively. Prove that, if three of the points $A$, $F$, $M$, $N$ are collinear, then all four are collinear.

2020 Macedonia Additional BMO TST, 3

Let $\triangle ABC$ be a scalene triangle, $O$ be the midpoint of $BC$, and $M$ and $N$ be the intersections of the circle with diameter $BC$ and $AB$ and $BC$, respectively. The bisectors of $\angle BAC$ and $\angle MON$ intersect at $R$. Prove that the circumcircles of $\triangle BMR$ and $\triangle CNR$ intersect on $BC$.

2009 Postal Coaching, 1

In a triangle $ABC$, let $D,E, F$ be interior points of sides $BC,CA,AB$ respectively. Let $AD,BE,CF$ meet the circumcircle of triangle $ABC$ in $K, L,M$ respectively. Prove that $\frac{AD}{DK} + \frac{BE}{EL} + \frac{CF}{FM} \ge 9$. When does the equality hold?

2020 Australian Maths Olympiad, 3

Let $ABC$ be a triangle with $\angle ACB=90^{\circ}$. Suppose that the tangent line at $C$ to the circle passing through $A,B,C$ intersects the line $AB$ at $D$. Let $E$ be the midpoint of $CD$ and let $F$ be a point on $EB$ such that $AF$ is parallel to $CD$. Prove that the lines $AB$ and $CF$ are perpendicular.

2015 Germany Team Selection Test, 2

Let $ABC$ be an acute triangle with the circumcircle $k$ and incenter $I$. The perpendicular through $I$ in $CI$ intersects segment $[BC]$ in $U$ and $k$ in $V$. In particular $V$ and $A$ are on different sides of $BC$. The parallel line through $U$ to $AI$ intersects $AV$ in $X$. Prove: If $XI$ and $AI$ are perpendicular to each other, then $XI$ intersects segment $[AC]$ in its midpoint $M$. [i](Notation: $[\cdot]$ denotes the line segment.)[/i]

1995 APMO, 3

Let $PQRS$ be a cyclic quadrilateral such that the segments $PQ$ and $RS$ are not parallel. Consider the set of circles through $P$ and $Q$, and the set of circles through $R$ and $S$. Determine the set $A$ of points of tangency of circles in these two sets.

2017 All-Russian Olympiad, 2

Let $ABC$ be an acute angled isosceles triangle with $AB=AC$ and circumcentre $O$. Lines $BO$ and $CO$ intersect $AC, AB$ respectively at $B', C'$. A straight line $l$ is drawn through $C'$ parallel to $AC$. Prove that the line $l$ is tangent to the circumcircle of $\triangle B'OC$.

Kyiv City MO Juniors Round2 2010+ geometry, 2016.9.2

The bisector of the angle $BAC$of the acute triangle $ABC$ ( $AC \ne AB$) intersects its circumscribed circle for the second time at the point $W$. Let $O$ be the center of the circumscribed circle $\Delta ABC$. The line $AW$ intersects for the second time the circumcribed circles of triangles $OWB$ and $OWC$ at the points $N$ and $M$, respectively. Prove that $BN + MC = AW$. (Mitrofanov V., Hilko D.)

2024 Austrian MO Regional Competition, 2

Let $ABC$ be an acute triangle with orthocenter $H$. The circumcircle of the triangle $BHC$ intersects $AC$ a second time in point $P$ and $AB$ a second time in point $Q$. Prove that $H$ is the circumcenter of the triangle $APQ$. [i](Karl Czakler)[/i]

Swiss NMO - geometry, 2012.6

Let $ABCD$ be a parallelogram with at least an angle not equal to $90^o$ and $k$ the circumcircle of the triangle $ABC$. Let $E$ be the diametrically opposite point of $B$. Show that the circumcircle of the triangle $ADE$ and $k$ have the same radius.

2004 India IMO Training Camp, 1

Let $ABC$ be an acute-angled triangle and $\Gamma$ be a circle with $AB$ as diameter intersecting $BC$ and $CA$ at $F ( \not= B)$ and $E (\not= A)$ respectively. Tangents are drawn at $E$ and $F$ to $\Gamma$ intersect at $P$. Show that the ratio of the circumcentre of triangle $ABC$ to that if $EFP$ is a rational number.

1998 China Team Selection Test, 1

In acute-angled $\bigtriangleup ABC$, $H$ is the orthocenter, $O$ is the circumcenter and $I$ is the incenter. Given that $\angle C > \angle B > \angle A$, prove that $I$ lies within $\bigtriangleup BOH$.

Indonesia MO Shortlist - geometry, g1.1

Given triangle $ ABC$. Points $ D,E,F$ outside triangle $ ABC$ are chosen such that triangles $ ABD$, $ BCE$, and $ CAF$ are equilateral triangles. Prove that cicumcircles of these three triangles are concurrent.

1996 All-Russian Olympiad, 6

In the isosceles triangle $ABC$ ($AC = BC$) point $O$ is the circumcenter, $I$ the incenter, and $D$ lies on $BC$ so that lines $OD$ and $BI$ are perpendicular. Prove that $ID$ and $AC$ are parallel. [i]M. Sonkin[/i]

2019 Romania Team Selection Test, 2

The altitudes through the vertices $ A,B,C$ of an acute-angled triangle $ ABC$ meet the opposite sides at $ D,E, F,$ respectively. The line through $ D$ parallel to $ EF$ meets the lines $ AC$ and $ AB$ at $ Q$ and $ R,$ respectively. The line $ EF$ meets $ BC$ at $ P.$ Prove that the circumcircle of the triangle $ PQR$ passes through the midpoint of $ BC.$

2020 Bundeswettbewerb Mathematik, 3

Two lines $m$ and $n$ intersect in a unique point $P$. A point $M$ moves along $m$ with constant speed, while another point $N$ moves along $n$ with the same speed. They both pass through the point $P$, but not at the same time. Show that there is a fixed point $Q \ne P$ such that the points $P,Q,M$ and $N$ lie on a common circle all the time.

2006 China Team Selection Test, 1

$H$ is the orthocentre of $\triangle{ABC}$. $D$, $E$, $F$ are on the circumcircle of $\triangle{ABC}$ such that $AD \parallel BE \parallel CF$. $S$, $T$, $U$ are the semetrical points of $D$, $E$, $F$ with respect to $BC$, $CA$, $AB$. Show that $S, T, U, H$ lie on the same circle.

2021 Czech and Slovak Olympiad III A, 2

Let $I$ denote the center of the circle inscribed in the right triangle $ABC$ with right angle at the vertex $A$. Next, denote by $M$ and $N$ the midpoints of the lines $AB$ and $BI$. Prove that the line $CI$ is tangent to the circumscribed circle of triangle $BMN$. (Patrik Bak, Josef Tkadlec)

2003 China Team Selection Test, 1

In triangle $ABC$, $AB > BC > CA$, $AB=6$, $\angle{B}-\angle{C}=90^o$. The incircle touches $BC$ at $E$ and $EF$ is a diameter of the incircle. Radical $AF$ intersect $BC$ at $D$. $DE$ equals to the circumradius of $\triangle{ABC}$. Find $BC$ and $AC$.

2013 Online Math Open Problems, 32

In $\triangle ABC$ with incenter $I$, $AB = 61$, $AC = 51$, and $BC=71$. The circumcircles of triangles $AIB$ and $AIC$ meet line $BC$ at points $D$ ($D \neq B$) and $E$ ($E \neq C$), respectively. Determine the length of segment $DE$. [i]James Tao[/i]

Swiss NMO - geometry, 2015.1

Let $ABC$ be an acute-angled triangle with $AB \ne BC$ and radius $k$. Let $P$ and $Q$ be the points of intersection of $k$ with the internal bisector and the external bisector of $\angle CBA$ respectively. Let $D$ be the intersection of $AC$ and $PQ$. Find the ratio $AD: DC$.

1995 AMC 12/AHSME, 28

Two parallel chords in a circle have lengths $10$ and $14$, and the distance between them is $6$. The chord parallel to these chords and midway between them is of length $\sqrt{a}$ where $a$ is [asy] // note: diagram deliberately not to scale -- azjps void htick(pair A, pair B, real r){ D(A--B); D(A-(r,0)--A+(r,0)); D(B-(r,0)--B+(r,0)); } size(120); pathpen = linewidth(0.7); pointpen = black+linewidth(3); real min = -0.6, step = 0.5; pair[] A, B; D(unitcircle); for(int i = 0; i < 3; ++i) { A.push(intersectionpoints((-9,min+i*step)--(9,min+i*step),unitcircle)[0]); B.push(intersectionpoints((-9,min+i*step)--(9,min+i*step),unitcircle)[1]); D(D(A[i])--D(B[i])); } MP("10",(A[0]+B[0])/2,N); MP("\sqrt{a}",(A[1]+B[1])/2,N); MP("14",(A[2]+B[2])/2,N); htick((B[1].x+0.1,B[0].y),(B[1].x+0.1,B[2].y),0.06); MP("6",(B[1].x+0.1,B[0].y/2+B[2].y/2),E);[/asy] $\textbf{(A)}\ 144 \qquad \textbf{(B)}\ 156 \qquad \textbf{(C)}\ 168 \qquad \textbf{(D)}\ 176 \qquad \textbf{(E)}\ 184$

2017 Vietnam National Olympiad, 3

Given an acute, non isoceles triangle $ABC$ and $(O)$ be its circumcircle, $H$ its orthocenter and $E, F$ are the feet of the altitudes from $B$ and $C$, respectively. $AH$ intersects $(O)$ at $D$ ($D\ne A$). a) Let $I$ be the midpoint of $AH$, $EI$ meets $BD$ at $M$ and $FI$ meets $CD$ at $N$. Prove that $MN\perp OH$. b) The lines $DE$, $DF$ intersect $(O)$ at $P,Q$ respectively ($P\ne D,Q\ne D$). $(AEF)$ meets $(O)$ and $AO$ at $R,S$ respectively ($R\ne A, S\ne A$). Prove that $BP,CQ,RS$ are concurrent.