This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3882

2012 Turkey Team Selection Test, 2

In an acute triangle $ABC,$ let $D$ be a point on the side $BC.$ Let $M_1, M_2, M_3, M_4, M_5$ be the midpoints of the line segments $AD, AB, AC, BD, CD,$ respectively and $O_1, O_2, O_3, O_4$ be the circumcenters of triangles $ABD, ACD, M_1M_2M_4, M_1M_3M_5,$ respectively. If $S$ and $T$ are midpoints of the line segments $AO_1$ and $AO_2,$ respectively, prove that $SO_3O_4T$ is an isosceles trapezoid.

2007 USAMO, 6

Let $ABC$ be an acute triangle with $\omega,S$, and $R$ being its incircle, circumcircle, and circumradius, respectively. Circle $\omega_{A}$ is tangent internally to $S$ at $A$ and tangent externally to $\omega$. Circle $S_{A}$ is tangent internally to $S$ at $A$ and tangent internally to $\omega$. Let $P_{A}$ and $Q_{A}$ denote the centers of $\omega_{A}$ and $S_{A}$, respectively. Define points $P_{B}, Q_{B}, P_{C}, Q_{C}$ analogously. Prove that \[8P_{A}Q_{A}\cdot P_{B}Q_{B}\cdot P_{C}Q_{C}\leq R^{3}\; , \] with equality if and only if triangle $ABC$ is equilateral.

2006 Bulgaria Team Selection Test, 1

[b]Problem 4.[/b] Let $k$ be the circumcircle of $\triangle ABC$, and $D$ the point on the arc $\overarc{AB},$ which do not pass through $C$. $I_A$ and $I_B$ are the centers of incircles of $\triangle ADC$ and $\triangle BDC$, respectively. Proove that the circumcircle of $\triangle I_AI_BC$ touches $k$ iff \[ \frac{AD}{BD}=\frac{AC+CD}{BC+CD}. \] [i] Stoyan Atanasov[/i]

1980 IMO, 1

Determine all positive integers $n$ such that the following statement holds: If a convex polygon with with $2n$ sides $A_1 A_2 \ldots A_{2n}$ is inscribed in a circle and $n-1$ of its $n$ pairs of opposite sides are parallel, which means if the pairs of opposite sides \[(A_1 A_2, A_{n+1} A_{n+2}), (A_2 A_3, A_{n+2} A_{n+3}), \ldots , (A_{n-1} A_n, A_{2n-1} A_{2n})\] are parallel, then the sides \[ A_n A_{n+1}, A_{2n} A_1\] are parallel as well.

2019 Ukraine Team Selection Test, 3

Given an acute triangle $ABC$ . It's altitudes $AA_1 , BB_1$ and $CC_1$ intersect at a point $H$ , the orthocenter of $\vartriangle ABC$. Let the lines $B_1C_1$ and $AA_1$ intersect at a point $K$, point $M$ be the midpoint of the segment $AH$. Prove that the circumscribed circle of $\vartriangle MKB_1$ touches the circumscribed circle of $\vartriangle ABC$ if and only if $BA1 = 3A1C$. (Bondarenko Mykhailo)

2016 All-Russian Olympiad, 2

Diagonals $AC,BD$ of cyclic quadrilateral $ABCD$ intersect at $P$.Point $Q$ is on$BC$ (between$B$ and $C$) such that $PQ \perp AC$.Prove that the line passes through the circumcenters of triangles $APD$ and $BQD$ is parallel to $AD$.(A.Kuznetsov)

2015 Saint Petersburg Mathematical Olympiad, 2

$AB=CD,AD \parallel BC$ and $AD>BC$. $\Omega$ is circumcircle of $ABCD$. Point $E$ is on $\Omega$ such that $BE \perp AD$. Prove that $AE+BC>DE$

1988 USAMO, 4

Let $I$ be the incenter of triangle $ABC$, and let $A'$, $B'$, and $C'$ be the circumcenters of triangles $IBC$, $ICA$, and $IAB$, respectively. Prove that the circumcircles of triangles $ABC$ and $A'B'C'$ are concentric.

2021 239 Open Mathematical Olympiad, 1

Points $X$ and $Y$ are the midpoints of arcs $AB$ and $BC$ of the circumscribed circle of triangle $ABC$. Point $T$ lies on side $AC$. It turned out that the bisectors of the angles $ATB$ and $BTC$ pass through points $X$ and $Y$ respectively. What angle $B$ can be in triangle $ABC$?

Kyiv City MO Juniors 2003+ geometry, 2012.9.5

The triangle $ABC$ with $AB> AC$ is inscribed in a circle, the angle bisector of $\angle BAC$ intersects the side $BC$ of the triangle at the point $K$, and the circumscribed circle at the point $M$. The midline of $\Delta ABC$, which is parallel to the side $AB$, intersects $AM$ at the point $O$, the line $CO$ intersects the line $AB$ at the point $N$. Prove that a circle can be circumscribed around the quadrilateral $BNKM$. (Nagel Igor)

1996 IMO Shortlist, 7

Let $ABC$ be an acute triangle with circumcenter $O$ and circumradius $R$. $AO$ meets the circumcircle of $BOC$ at $A'$, $BO$ meets the circumcircle of $COA$ at $B'$ and $CO$ meets the circumcircle of $AOB$ at $C'$. Prove that \[OA'\cdot OB'\cdot OC'\geq 8R^{3}.\] Sorry if this has been posted before since this is a very classical problem, but I failed to find it with the search-function.

2015 Saudi Arabia JBMO TST, 3

Let $ABC$ be an acute-angled triangle inscribed in the circle $(O)$. Let $AD$ be the diameter of $(O)$. The points $M,N$ are chosen on $BC$ such that $OM\parallel AB, ON\parallel AC$. The lines $DM,DN$ cut $(O)$ again at $P,Q$. Prove that $BC=DP=DQ$. Tran Quang Hung, Vietnam

1998 Canada National Olympiad, 4

Let $ABC$ be a triangle with $\angle{BAC} = 40^{\circ}$ and $\angle{ABC}=60^{\circ}$. Let $D$ and $E$ be the points lying on the sides $AC$ and $AB$, respectively, such that $\angle{CBD} = 40^{\circ}$ and $\angle{BCE} = 70^{\circ}$. Let $F$ be the point of intersection of the lines $BD$ and $CE$. Show that the line $AF$ is perpendicular to the line $BC$.

2021 Moldova Team Selection Test, 3

Acute triangle $ABC$ with $AB>BC$ is inscribed in circle $\Omega$. Points $D$ and $E$, that lie on $(BC)$ and $(AB)$ are the feet of altitudes from $A$ and $C$ in triangle $ABC$, and $M$ is the midpoint of the segment $DE$. Half-line $(AM$ intersects the circle $\Omega$ for the second time in $N$. Show that the circumcenter of triangle $MDN$ lies on the line $BC$.

2019 Iran Team Selection Test, 4

Given an acute-angled triangle $ABC$ with orthocenter $H$. Reflection of nine-point circle about $AH$ intersects circumcircle at points $X$ and $Y$. Prove that $AH$ is the external bisector of $\angle XHY$. [i]Proposed by Mohammad Javad Shabani[/i]

2017 Sharygin Geometry Olympiad, 6

A median of an acute-angled triangle dissects it into two triangles. Prove that each of them can be covered by a semidisc congruent to a half of the circumdisc of the initial triangle.

2014 Czech-Polish-Slovak Junior Match, 2

Let $ABCD$ be a parallelogram with $\angle BAD<90^o$ and $AB> BC$ . The angle bisector of $BAD$ intersects line $CD$ at point $P$ and line $BC$ at point $Q$. Prove that the center of the circle circumscirbed around the triangle $CPQ$ is equidistant from points $B$ and $D$.

2014 India IMO Training Camp, 1

In a triangle $ABC$, with $AB\neq AC$ and $A\neq 60^{0},120^{0}$, $D$ is a point on line $AC$ different from $C$. Suppose that the circumcentres and orthocentres of triangles $ABC$ and $ABD$ lie on a circle. Prove that $\angle ABD=\angle ACB$.

2011 Morocco TST, 3

The vertices $X, Y , Z$ of an equilateral triangle $XYZ$ lie respectively on the sides $BC, CA, AB$ of an acute-angled triangle $ABC.$ Prove that the incenter of triangle $ABC$ lies inside triangle $XYZ.$ [i]Proposed by Nikolay Beluhov, Bulgaria[/i]

2021 Harvard-MIT Mathematics Tournament., 10

Acute triangle $ABC$ has circumcircle $\Gamma$. Let $M$ be the midpoint of $BC.$ Points $P$ and $Q$ lie on $\Gamma$ so that $\angle APM = 90^{\circ}$ and $Q \neq A$ lies on line $AM.$ Segments $PQ$ and $BC$ intersect at $S$. Suppose that $BS = 1, CS = 3, PQ = 8\sqrt{\tfrac{7}{37}},$ and the radius of $\Gamma$ is $r$. If the sum of all possible values of $r^2$ can be expressed as $\tfrac ab$ for relatively prime positive integers $a$ and $b,$ compute $100a + b$.

2005 Mediterranean Mathematics Olympiad, 2

Let $k$ and $k'$ be concentric circles with center $O$ and radius $R$ and $R'$ where $R<R'$ holds. A line passing through $O$ intersects $k$ at $A$ and $k'$ at $B$ where $O$ is between $A$ and $B$. Another line passing through $O$ and distict from $AB$ intersects $k$ at $E$ and $k'$ at $F$ where $E$ is between $O$ and $F$. Prove that the circumcircles of the triangles $OAE$ and $OBF$, the circle with diameter $EF$ and the circle with diameter $AB$ are concurrent.

1965 Bulgaria National Olympiad, Problem 3

In the triangle $ABC$, angle bisector $CD$ intersects the circumcircle of $ABC$ at the point $K$. (a) Prove the equalities: $$\frac1{ID}-\frac1{IK}=\frac1{CI},\enspace\frac{CI}{ID}-\frac{ID}{DK}=1$$where $I$ is the center of the inscribed circle of triangle $ABC$. (b) On the segment $CK$ some point $P$ is chosen whose projections on $AC,BC,AB$ respectively are $P_1,P_2,P_3$. The lines $PP_3$ and $P_1P_2$ intersect at a point $M$. Find the locus of $M$ when $P$ moves around segment $CK$.

2011 Iran MO (3rd Round), 1

We have $4$ circles in plane such that any two of them are tangent to each other. we connect the tangency point of two circles to the tangency point of two other circles. Prove that these three lines are concurrent. [i]proposed by Masoud Nourbakhsh[/i]

2000 USA Team Selection Test, 6

Let $ ABC$ be a triangle inscribed in a circle of radius $ R$, and let $ P$ be a point in the interior of triangle $ ABC$. Prove that \[ \frac {PA}{BC^{2}} \plus{} \frac {PB}{CA^{2}} \plus{} \frac {PC}{AB^{2}}\ge \frac {1}{R}. \] [i]Alternative formulation:[/i] If $ ABC$ is a triangle with sidelengths $ BC\equal{}a$, $ CA\equal{}b$, $ AB\equal{}c$ and circumradius $ R$, and $ P$ is a point inside the triangle $ ABC$, then prove that $ \frac {PA}{a^{2}} \plus{} \frac {PB}{b^{2}} \plus{} \frac {PC}{c^{2}}\ge \frac {1}{R}$.

2016 Saudi Arabia IMO TST, 2

Let $ABC$ be a triangle inscribed in the circle $(O)$ and $P$ is a point inside the triangle $ABC$. Let $D$ be a point on $(O)$ such that $AD \perp AP$. The line $CD$ cuts the perpendicular bisector of $BC$ at $M$. The line $AD$ cuts the line passing through $B$ and is perpendicular to $BP$ at $Q$. Let $N$ be the reflection of $Q$ through $M$. Prove that $CN \perp CP$.