This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3882

2017 Harvard-MIT Mathematics Tournament, 6

In convex quadrilateral $ABCD$ we have $AB=15$, $BC=16$, $CD=12$, $DA=25$, and $BD=20$. Let $M$ and $\gamma$ denote the circumcenter and circumcircle of $\triangle ABD$. Line $CB$ meets $\gamma$ again at $F$, line $AF$ meets $MC$ at $G$, and line $GD$ meets $\gamma$ again at $E$. Determine the area of pentagon $ABCDE$.

2024 Abelkonkurransen Finale, 4a

The triangle $ABC$ with $AB < AC$ has an altitude $AD$. The points $E$ and $A$ lie on opposite sides of $BC$, with $E$ on the circumcircle of $ABC$. Furthermore, $AD = DE$ and $\angle ADO=\angle CDE$, where $O$ is the circumcentre of $ABC$. Determine $\angle BAC$.

2003 Iran MO (3rd Round), 20

Suppose that $ M$ is an arbitrary point on side $ BC$ of triangle $ ABC$. $ B_1,C_1$ are points on $ AB,AC$ such that $ MB = MB_1$ and $ MC = MC_1$. Suppose that $ H,I$ are orthocenter of triangle $ ABC$ and incenter of triangle $ MB_1C_1$. Prove that $ A,B_1,H,I,C_1$ lie on a circle.

1989 China Team Selection Test, 4

Given triangle $ABC$, squares $ABEF, BCGH, CAIJ$ are constructed externally on side $AB, BC, CA$, respectively. Let $AH \cap BJ = P_1$, $BJ \cap CF = Q_1$, $CF \cap AH = R_1$, $AG \cap CE = P_2$, $BI \cap AG = Q_2$, $CE \cap BI = R_2$. Prove that triangle $P_1 Q_1 R_1$ is congruent to triangle $P_2 Q_2 R_2$.

2012 Kazakhstan National Olympiad, 2

Let $ABCD$ be an inscribed quadrilateral, in which $\angle BAD<90$. On the rays $AB$ and $AD$ are selected points $K$ and $L$, respectively, such that$ KA = KD, LA = LB$. Let $N$ - the midpoint of $AC$.Prove that if $\angle BNC=\angle DNC $,so $\angle KNL=\angle BCD $

2016 Sharygin Geometry Olympiad, P19

Let $ABCDEF$ be a regular hexagon. Points $P$ and $Q$ on tangents to its circumcircle at $A$ and $D$ respectively are such that $PQ$ touches the minor arc $EF$ of this circle. Find the angle between $PB$ and $QC$.

2014 NIMO Summer Contest, 14

Let $ABC$ be a triangle with circumcenter $O$ and let $X$, $Y$, $Z$ be the midpoints of arcs $BAC$, $ABC$, $ACB$ on its circumcircle. Let $G$ and $I$ denote the centroid of $\triangle XYZ$ and the incenter of $\triangle ABC$. Given that $AB = 13$, $BC = 14$, $CA = 15$, and $\frac {GO}{GI} = \frac mn$ for relatively prime positive integers $m$ and $n$, compute $100m+n$. [i]Proposed by Evan Chen[/i]

2000 IMO Shortlist, 5

The tangents at $B$ and $A$ to the circumcircle of an acute angled triangle $ABC$ meet the tangent at $C$ at $T$ and $U$ respectively. $AT$ meets $BC$ at $P$, and $Q$ is the midpoint of $AP$; $BU$ meets $CA$ at $R$, and $S$ is the midpoint of $BR$. Prove that $\angle ABQ=\angle BAS$. Determine, in terms of ratios of side lengths, the triangles for which this angle is a maximum.

1997 Pre-Preparation Course Examination, 5

Let $H$ be the orthocenter of the triangle $ABC$ and $P$ an arbitrary point on circumcircle of triangle. $BH$ meets $AC$ at $E$. $PAQB$ and $PARC$ are two parallelograms and $AQ$ meets $HR$ at $X$. Show that $EX \parallel AP$.

2005 China Team Selection Test, 3

Find the least positive integer $n$ ($n\geq 3$), such that among any $n$ points (no three are collinear) in the plane, there exist three points which are the vertices of a non-isoscele triangle.

2012 German National Olympiad, 3

Let $ABC$ a triangle and $k$ a circle such that: (1) The circle $k$ passes through $A$ and $B$ and touches the line $AC.$ (2) The tangent to $k$ at $B$ intersects the line $AC$ in a point $X\ne C.$ (3) The circumcircle $\omega$ of $BXC$ intersects $k$ in a point $Q\ne B.$ (4) The tangent to $\omega$ at $X$ intersects the line $AB$ in a point $Y.$ Prove that the line $XY$ is tangent to the circumcircle of $BQY.$

Revenge EL(S)MO 2024, 2

In $\triangle ABC$ let $D$ and $E$ be points on $AB$ and $AC$ respectively. The circumcircle of $\triangle CDE$ meets $AB$ again at $F$, and the circumcircle of $\triangle ACD$ meets $BC$ again at $G$. Show that if the circumcircles of $DFG$ and $ADE$ meet at $H$, then the three lines $AG$, $BE$, and $DH$ concur. Proposed by [i]Oron Wang[/i] inspired by [i]Tiger Zhang[/i]

2022 Nordic, 4

Let $ABC$ be an acute-angled triangle with circumscribed circle $k$ and centre of the circumscribed circle $O$. A line through $O$ intersects the sides $AB$ and $AC$ at $D$ and $E$.Denote by $B'$ and $C'$ the reflections of $B$ and $C$ over $O$, respectively. Prove that the circumscribed circles of $ODC'$ and $OEB'$ concur on $k$.

2021 Thailand TSTST, 3

A triangle $ABC$ with $AB<AC<BC$ is given. The point $P$ is the center of an excircle touching the line segment $AB$ at $D$. The point $Q$ is the center of an excircle touching the line segment $AC$ at $E$. The circumcircle of the triangle $ADE$ intersects $\overline{PE}$ and $\overline{QD}$ again at $G$ and $H$ respectively. The line perpendicular to $\overline{AG}$ at $G$ intersects the side $AB$ at $R$. The line perpendicular to $\overline{AH}$ at $H$ intersects the side $AC$ at $S$. Prove that $\overline{DE}$ and $\overline{RS}$ are parallel.

2013 Canada National Olympiad, 5

Let $O$ denote the circumcentre of an acute-angled triangle $ABC$. Let point $P$ on side $AB$ be such that $\angle BOP = \angle ABC$, and let point $Q$ on side $AC$ be such that $\angle COQ = \angle ACB$. Prove that the reflection of $BC$ in the line $PQ$ is tangent to the circumcircle of triangle $APQ$.

2018 Belarusian National Olympiad, 10.7

The square $A_1B_1C_1D_1$ is inscribed in the right triangle $ABC$ (with $C=90$) so that points $A_1$, $B_1$ lie on the legs $CB$ and $CA$ respectively ,and points $C_1$, $D_1$ lie on the hypotenuse $AB$. The circumcircle of triangles $B_1A_1C$ an $AC_1B_1$ intersect at $B_1$ and $Y$. Prove that the lines $A_1X$ and $B_1Y$ meet on the hypotenuse $AB$.

2008 Croatia Team Selection Test, 3

Point $ M$ is taken on side $ BC$ of a triangle $ ABC$ such that the centroid $ T_c$ of triangle $ ABM$ lies on the circumcircle of $ \triangle ACM$ and the centroid $ T_b$ of $ \triangle ACM$ lies on the circumcircle of $ \triangle ABM$. Prove that the medians of the triangles $ ABM$ and $ ACM$ from $ M$ are of the same length.

1988 Tournament Of Towns, (195) 2

Let $N$ be the orthocentre of triangle $ABC$ (i .e. the point where the altitudes meet). Prove that the circumscribed circles of triangles $ABN, ACN$ and $BCN$ each have equal radius.

2015 Bosnia And Herzegovina - Regional Olympiad, 3

Let $ABC$ be a triangle with incenter $I$. Line $AI$ intersects circumcircle of $ABC$ in points $A$ and $D$, $(A \neq D)$. Incircle of $ABC$ touches side $BC$ in point $E$ . Line $DE$ intersects circumcircle of $ABC$ in points $D$ and $F$, $(D \neq F)$. Prove that $\angle AFI = 90^{\circ}$

2010 Iran MO (3rd Round), 4

in a triangle $ABC$, $I$ is the incenter. $BI$ and $CI$ cut the circumcircle of $ABC$ at $E$ and $F$ respectively. $M$ is the midpoint of $EF$. $C$ is a circle with diameter $EF$. $IM$ cuts $C$ at two points $L$ and $K$ and the arc $BC$ of circumcircle of $ABC$ (not containing $A$) at $D$. prove that $\frac{DL}{IL}=\frac{DK}{IK}$.(25 points)

2014 Online Math Open Problems, 19

In triangle $ABC$, $AB=3$, $AC=5$, and $BC=7$. Let $E$ be the reflection of $A$ over $\overline{BC}$, and let line $BE$ meet the circumcircle of $ABC$ again at $D$. Let $I$ be the incenter of $\triangle ABD$. Given that $\cos ^2 \angle AEI = \frac{m}{n},$ where $m$ and $n$ are relatively prime positive integers, determine $m+n$. [i]Proposed by Ray Li[/i]

1992 IberoAmerican, 3

In a triangle $ABC$, points $A_{1}$ and $A_{2}$ are chosen in the prolongations beyond $A$ of segments $AB$ and $AC$, such that $AA_{1}=AA_{2}=BC$. Define analogously points $B_{1}$, $B_{2}$, $C_{1}$, $C_{2}$. If $[ABC]$ denotes the area of triangle $ABC$, show that $[A_{1}A_{2}B_{1}B_{2}C_{1}C_{2}] \geq 13 [ABC]$.

2009 China Western Mathematical Olympiad, 3

Let $H$ be the orthocenter of acute triangle $ABC$ and $D$ the midpoint of $BC$. A line through $H$ intersects $AB,AC$ at $F,E$ respectively, such that $AE=AF$. The ray $DH$ intersects the circumcircle of $\triangle ABC$ at $P$. Prove that $P,A,E,F$ are concyclic.

2008 APMO, 3

Let $ \Gamma$ be the circumcircle of a triangle $ ABC$. A circle passing through points $ A$ and $ C$ meets the sides $ BC$ and $ BA$ at $ D$ and $ E$, respectively. The lines $ AD$ and $ CE$ meet $ \Gamma$ again at $ G$ and $ H$, respectively. The tangent lines of $ \Gamma$ at $ A$ and $ C$ meet the line $ DE$ at $ L$ and $ M$, respectively. Prove that the lines $ LH$ and $ MG$ meet at $ \Gamma$.

1986 IMO Shortlist, 14

The circle inscribed in a triangle $ABC$ touches the sides $BC,CA,AB$ in $D,E, F$, respectively, and $X, Y,Z$ are the midpoints of $EF, FD,DE$, respectively. Prove that the centers of the inscribed circle and of the circles around $XYZ$ and $ABC$ are collinear.