This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3882

2019 China Team Selection Test, 1

$ABCDE$ is a cyclic pentagon, with circumcentre $O$. $AB=AE=CD$. $I$ midpoint of $BC$. $J$ midpoint of $DE$. $F$ is the orthocentre of $\triangle ABE$, and $G$ the centroid of $\triangle AIJ$.$CE$ intersects $BD$ at $H$, $OG$ intersects $FH$ at $M$. Show that $AM\perp CD$.

Geometry Mathley 2011-12, 2.1

Let $ABC$ be an equilateral triangle with circumcircle of center $O$ and radius $R$. Point $M$ is exterior to the triangle such that $S_bS_c = S_aS_b+S_aS_c$, where $S_a, S_b, S_c$ are the areas of triangles $MBC,MCA,MAB$ respectively. Prove that $OM \ge R$. Nguyễn Tiến Lâm

2018 OMMock - Mexico National Olympiad Mock Exam, 1

Let $ABCD$ be a trapezoid with bases $AD$ and $BC$, and let $M$ be the midpoint of $CD$. The circumcircle of triangle $BCM$ meets $AC$ and $BD$ again at $E$ and $F$, with $E$ and $F$ distinct, and line $EF$ meets the circumcircle of triangle $AEM$ again at $P$. Prove that $CP$ is parallel to $BD$. [i]Proposed by Ariel García[/i]

2005 Germany Team Selection Test, 2

Let $\Gamma$ be a circle and let $d$ be a line such that $\Gamma$ and $d$ have no common points. Further, let $AB$ be a diameter of the circle $\Gamma$; assume that this diameter $AB$ is perpendicular to the line $d$, and the point $B$ is nearer to the line $d$ than the point $A$. Let $C$ be an arbitrary point on the circle $\Gamma$, different from the points $A$ and $B$. Let $D$ be the point of intersection of the lines $AC$ and $d$. One of the two tangents from the point $D$ to the circle $\Gamma$ touches this circle $\Gamma$ at a point $E$; hereby, we assume that the points $B$ and $E$ lie in the same halfplane with respect to the line $AC$. Denote by $F$ the point of intersection of the lines $BE$ and $d$. Let the line $AF$ intersect the circle $\Gamma$ at a point $G$, different from $A$. Prove that the reflection of the point $G$ in the line $AB$ lies on the line $CF$.

2018 Brazil National Olympiad, 3

Let $ABC$ be an acute-angled triangle with circumcenter $O$ and orthocenter $H$. The circle with center $X_a$ passes in the points $A$ and $H$ and is tangent to the circumcircle of $ABC$. Define $X_b, X_c$ analogously, let $O_a, O_b, O_c$ the symmetric of $O$ to the sides $BC, AC$ and $AB$, respectively. Prove that the lines $O_aX_a, O_bX_b, O_cX_c$ are concurrents.

2021 Saudi Arabia Training Tests, 20

Let $ABC$ be an acute, non-isosceles triangle with altitude $AD$ ($D \in BC$), $M$ is the midpoint of $AD$ and $O$ is the circumcenter. Line $AO$ meets $BC$ at $K$ and circle of center $K$, radius $KA$ cuts $AB,AC$ at $E, F$ respectively. Prove that $AO$ bisects $EF$.

2024 Taiwan TST Round 3, 2

Let $I$ be the incenter of triangle $ABC$, and let $\omega$ be its incircle. Let $E$ and $F$ be the points of tangency of $\omega$ with $CA$ and $AB$, respectively. Let $X$ and $Y$ be the intersections of the circumcircle of $BIC$ and $\omega$. Take a point $T$ on $BC$ such that $\angle AIT$ is a right angle. Let $G$ be the intersection of $EF$ and $BC$, and let $Z$ be the intersection of $XY$ and $AT$. Prove that $AZ$, $ZG$, and $AI$ form an isosceles triangle. [i]Proposed by Li4 and usjl.[/i]

2019 Pan-African, 4

The tangents to the circumcircle of $\triangle ABC$ at $B$ and $C$ meet at $D$. The circumcircle of $\triangle BCD$ meets sides $AC$ and $AB$ again at $E$ and $F$ respectively. Let $O$ be the circumcentre of $\triangle ABC$. Show that $AO$ is perpendicular to $EF$.

2018 Hong Kong TST, 1

Let $ABC$ be a triangle with $AB=AC$. A circle $\Gamma$ lies outside triangle $ABC$ and is tangent to line $AC$ at $C$. Point $D$ lies on $\Gamma$ such that the circumcircle of triangle $ABD$ is internally tangent to $\Gamma$. Segment $AD$ meets $\Gamma$ secondly at $E$. Prove that $BE$ is tangent to $\Gamma$

2001 Tuymaada Olympiad, 3

Let ABC be an acute isosceles triangle ($AB=BC$) inscribed in a circle with center $O$ . The line through the midpoint of the chord $AB$ and point $O$ intersects the line $AC$ at $L$ and the circle at the point $P$. Let the bisector of angle $BAC$ intersects the circle at point $K$. Lines $AB$ and $PK$ intersect at point $D$. Prove that the points $L,B,D$ and $P$ lie on the same circle.

2015 Junior Balkan Team Selection Tests - Romania, 3

Let $ABC$ be an acute triangle , with $AB \neq AC$ and denote its orthocenter by $H$ . The point $D$ is located on the side $BC$ and the circumcircles of the triangles $ABD$ and $ACD$ intersects for the second time the lines $AC$ , respectively $AB$ in the points $E$ respectively $F$. If we denote by $P$ the intersection point of $BE$ and $CF$ then show that $HP \parallel BC$ if and only if $AD$ passes through the circumcenter of the triangle $ABC$.

2000 National High School Mathematics League, 1

In acute triangle $ABC$, $D,E$ are two points on side $BC$, satisfying that $\angle BAE=\angle CAF$. $FM\perp AB,EN\perp AC$ ($M,N$ are foot points). $AE$ intersects the circumcircle of $\triangle ABC$ at $D$. Prove that the area of $\triangle ABC$ and quadrilateral $AMDN$ are equal.

2012 Sharygin Geometry Olympiad, 6

Let $\omega$ be the circumcircle of triangle $ABC$. A point $B_1$ is chosen on the prolongation of side $AB$ beyond point B so that $AB_1 = AC$. The angle bisector of $\angle BAC$ meets $\omega$ again at point $W$. Prove that the orthocenter of triangle $AWB_1$ lies on $\omega$ . (A.Tumanyan)

2007 IMO, 4

In triangle $ ABC$ the bisector of angle $ BCA$ intersects the circumcircle again at $ R$, the perpendicular bisector of $ BC$ at $ P$, and the perpendicular bisector of $ AC$ at $ Q$. The midpoint of $ BC$ is $ K$ and the midpoint of $ AC$ is $ L$. Prove that the triangles $ RPK$ and $ RQL$ have the same area. [i]Author: Marek Pechal, Czech Republic[/i]

Kyiv City MO 1984-93 - geometry, 1988.8.5

In the triangle $ABC$, the angle bisector $AK$ is drawn. The center of the circle inscribed in the triangle $AKC$ coincides with the center of the circle, circumscribed around the triangle $ABC$. Determine the angles of triangle $ABC$.

2001 National High School Mathematics League, 1

$AD,BE,CF$ are three heights of $\triangle ABC$, and they intersect at $H$. Let $O$ be the circumcenter of $\triangle ABC$, $ED\cap AB=M,FD\cap AC=N$. Prove: [b](a)[/b] $OB\perp DF, OC\perp DE$. [b](b)[/b] $OH\perp MN$.

2022 Israel TST, 3

In triangle $ABC$, the angle bisectors are $BE$ and $CF$ (where $E, F$ are on the sides of the triangle), and their intersection point is $I$. Point $N$ lies on the circumcircle of $AEF$, and the angle $\angle IAN$ is right. The circumcircle of $AEF$ meets the line $NI$ a second time at the point $L$. Show that the circumcenter of $AIL$ lies on line $BC$.

1997 Romania Team Selection Test, 4

Let $w$ be a circle and $AB$ a line not intersecting $w$. Given a point $P_{0}$ on $w$, define the sequence $P_{0},P_{1},\ldots $ as follows: $P_{n\plus{}1}$ is the second intersection with $w$ of the line passing through $B$ and the second intersection of the line $AP_{n}$ with $w$. Prove that for a positive integer $k$, if $P_{0}\equal{}P_{k}$ for some choice of $P_{0}$, then $P_{0}\equal{}P_{k}$ for any choice of $P_{0}$. [i]Gheorge Eckstein[/i]

2002 District Olympiad, 2

Let $ ABCD $ be an inscriptible quadrilateral and $ M $ be a point on its circumcircle, distinct from its vertices. Let $ H_1,H_2,H_3,H_4 $ be the orthocenters of $ MAB,MBC, MCD, $ respectively, $ MDA, $ and $ E,F, $ the midpoints of the segments $ AB, $ respectivley, $ CD. $ Prove that: [b]a)[/b] $ H_1H_2H_3H_4 $ is a parallelogram. [b]b)[/b] $ H_1H_3=2\cdot EF. $

1970 IMO Longlists, 22

In the triangle $ABC$ let $B'$ and $C'$ be the midpoints of the sides $AC$ and $AB$ respectively and $H$ the foot of the altitude passing through the vertex $A$. Prove that the circumcircles of the triangles $AB'C'$,$BC'H$, and $B'CH$ have a common point $I$ and that the line $HI$ passes through the midpoint of the segment $B'C'.$

2014 India IMO Training Camp, 3

Let $ABC$ be a triangle with $\angle B > \angle C$. Let $P$ and $Q$ be two different points on line $AC$ such that $\angle PBA = \angle QBA = \angle ACB $ and $A$ is located between $P$ and $C$. Suppose that there exists an interior point $D$ of segment $BQ$ for which $PD=PB$. Let the ray $AD$ intersect the circle $ABC$ at $R \neq A$. Prove that $QB = QR$.

1957 Moscow Mathematical Olympiad, 362

(a) A circle is inscribed in a triangle. The tangent points are the vertices of a second triangle in which another circle is inscribed. Its tangency points are the vertices of a third triangle. The angles of this triangle are identical to those of the first triangle. Find these angles. (b) A circle is inscribed in a scalene triangle. The tangent points are vertices of another triangle, in which a circle is inscribed whose tangent points are vertices of a third triangle, in which a third circle is inscribed, etc. Prove that the resulting sequence does not contain a pair of similar triangles.

2005 Turkey Junior National Olympiad, 1

Let $ABC$ be an acute triangle. Let$H$ and $D$ be points on $[AC]$ and $[BC]$, respectively, such that $BH \perp AC$ and $HD \perp BC$. Let $O_1$ be the circumcenter of $\triangle ABH$, and $O_2$ be the circumcenter of $\triangle BHD$, and $O_3$ be the circumcenter of $\triangle HDC$. Find the ratio of area of $\triangle O_1O_2O_3$ and $\triangle ABH$.

1991 Greece National Olympiad, 2

Let $O$ be the circumcenter of triangle $ABC$ and let $A_1,B_1,C_1$ be the midpoints of arcs $BC, CA,AB$ respectively. If $I$ is the incenter of triangle $ABC$, prove that $$\overrightarrow{OI}= \overrightarrow{OA_1}+ \overrightarrow{OB_1}+ \overrightarrow{OC_1}.$$

2014 Contests, 3

The triangle $ABC$ is inscribed in a circle $w_1$. Inscribed in a triangle circle touchs the sides $BC$ in a point $N$. $w_2$ — the circle inscribed in a segment $BAC$ circle of $w_1$, and passing through a point $N$. Let points $O$ and $J$ — the centers of circles $w_2$ and an extra inscribed circle (touching side $BC$) respectively. Prove, that lines $AO$ and $JN$ are parallel.