Found problems: 3882
Brazil L2 Finals (OBM) - geometry, 2018.3
Let $ABC$ be an acute-angled triangle with circumcenter $O$ and orthocenter $H$. The circle with center $X_a$ passes in the points $A$ and $H$ and is tangent to the circumcircle of $ABC$. Define $X_b, X_c$ analogously, let $O_a, O_b, O_c$ the symmetric of $O$ to the sides $BC, AC$ and $AB$, respectively. Prove that the lines $O_aX_a, O_bX_b, O_cX_c$ are concurrents.
2018 China Western Mathematical Olympiad, 5
In acute triangle $ABC,$ $AB<AC,$ $O$ is the circumcenter of the triangle. $M$ is the midpoint of segment $BC,$ $(AOM)$ intersects the line $AB$ again at $D$ and intersects the segment $AC$ at $E.$
Prove that $DM=EC.$
2003 Iran MO (3rd Round), 13
here is the most difficult and the most beautiful problem occurs in 21th iranian (2003) olympiad
assume that P is n-gon ,lying on the plane ,we name its edge 1,2,..,n.
if S=s1,s2,s3,.... be a finite or infinite sequence such that for each i, si is in {1,2,...,n},
we move P on the plane according to the S in this form: at first we reflect P through the s1
( s1 means the edge which iys number is s1)then through s2 and so on like the figure below.
a)show that there exist the infinite sequence S sucth that if we move P according to S we cover all the plane
b)prove that the sequence in a) isn't periodic.
c)assume that P is regular pentagon ,which the radius of its circumcircle is 1,and D is circle ,with radius 1.00001 ,arbitrarily in the plane .does exist a sequence S such that we move P according to S then P reside in D completely?
2012 NIMO Problems, 6
In $\triangle ABC$ with circumcenter $O$, $\measuredangle A = 45^\circ$. Denote by $X$ the second intersection of $\overrightarrow{AO}$ with the circumcircle of $\triangle BOC$. Compute the area of quadrilateral $ABXC$ if $BX = 8$ and $CX = 15$.
[i]Proposed by Aaron Lin[/i]
2000 Tournament Of Towns, 2
The chords $AC$ and $BD$ of a, circle with centre $O$ intersect at the point $K$. The circumcentres of triangles $AKB$ and $CKD$ are $M$ and $N$ respectively. Prove that $OM = KN$.
(A Zaslavsky )
1998 All-Russian Olympiad Regional Round, 10.2
In an acute triangle $ABC$, a circle $S$ is drawn through the center $O$ of the circumcircle and the vertices $B$ and $C$. Let $OK$ be the diameter of the circle $S$, $D$ and $E$, be it's intersection points with the straight lines $AB$ and $AC$ respectively. Prove that $ADKE$ is a parallelogram.
Kharkiv City MO Seniors - geometry, 2015.10.3
On side $AB$ of triangle $ABC$, point $M$ is selected. A straight line passing through $M$ intersects the segment $AC$ at point $N$ and the ray $CB$ at point $K$. The circumscribed circle of the triangle $AMN$ intersects $\omega$, the circumscribed circle of the triangle $ABC$, at points $A$ and $S$. Straight lines $SM$ and $SK$ intersect with $\omega$ for the second time at points $P$ and $Q$, respectively. Prove that $AC = PQ$.
2024 Regional Competition For Advanced Students, 2
Let $ABC$ be an acute triangle with orthocenter $H$. The circumcircle of the triangle $BHC$ intersects $AC$ a second time in point $P$ and $AB$ a second time in point $Q$. Prove that $H$ is the circumcenter of the triangle $APQ$.
[i](Karl Czakler)[/i]
2009 Kazakhstan National Olympiad, 2
Let in-circle of $ABC$ touch $AB$, $BC$, $AC$ in $C_1$, $A_1$, $B_1$ respectively.
Let $H$- intersection point of altitudes in $A_1B_1C_1$, $I$ and $O$-be in-center and circumcenter of $ABC$ respectively.
Prove, that $I, O, H$ lies on one line.
2008 IMO Shortlist, 1
Let $ H$ be the orthocenter of an acute-angled triangle $ ABC$. The circle $ \Gamma_{A}$ centered at the midpoint of $ BC$ and passing through $ H$ intersects the sideline $ BC$ at points $ A_{1}$ and $ A_{2}$. Similarly, define the points $ B_{1}$, $ B_{2}$, $ C_{1}$ and $ C_{2}$.
Prove that the six points $ A_{1}$, $ A_{2}$, $ B_{1}$, $ B_{2}$, $ C_{1}$ and $ C_{2}$ are concyclic.
[i]Author: Andrey Gavrilyuk, Russia[/i]
2000 Baltic Way, 3
Given a triangle $ ABC$ with $ \angle A \equal{} 90^{\circ}$ and $ AB \neq AC$. The points $ D$, $ E$, $ F$ lie on the sides $ BC$, $ CA$, $ AB$, respectively, in such a way that $ AFDE$ is a square. Prove that the line $ BC$, the line $ FE$ and the line tangent at the point $ A$ to the circumcircle of the triangle $ ABC$ intersect in one point.
2017 Sharygin Geometry Olympiad, P19
Let cevians $AA', BB'$ and $CC'$ of triangle $ABC$ concur at point $P.$ The circumcircle of triangle $PA'B'$ meets $AC$ and $BC$ at points $M$ and $N$ respectively, and the circumcircles of triangles $PC'B'$ and $PA'C'$ meet $AC$ and $BC$ for the second time respectively at points $K$ and $L$. The line $c$ passes through the midpoints of segments $MN$ and $KL$. The lines $a$ and $b$ are defined similarly. Prove that $a$, $b$ and $c$ concur.
1967 Czech and Slovak Olympiad III A, 4
Let $ABC$ be an acute triangle, $k$ its circumcirle and $m$ a line such that $m\cap k=\emptyset, m\parallel BC.$ Denote $D$ the intersection of $m$ and ray $AB.$
a) Let $X$ be an inner point of the arc $BC$ not containing $A$ and denote $Y$ the intersection of lines $m,CX.$ Show that $A,D,X,Y$ are concyclic and name this circle $\kappa$.
b) Determine relative position of $\kappa$ and $m$ in case when $C,D,X$ are collinear.
2004 Iran Team Selection Test, 3
Suppose that $ ABCD$ is a convex quadrilateral. Let $ F \equal{} AB\cap CD$, $ E \equal{} AD\cap BC$ and $ T \equal{} AC\cap BD$. Suppose that $ A,B,T,E$ lie on a circle which intersects with $ EF$ at $ P$. Prove that if $ M$ is midpoint of $ AB$, then $ \angle APM \equal{} \angle BPT$.
2009 India IMO Training Camp, 1
Let $ ABC$ be a triangle with $ \angle A = 60^{\circ}$.Prove that if $ T$ is point of contact of Incircle And Nine-Point Circle, Then $ AT = r$,
$ r$ being inradius.
Kyiv City MO Juniors 2003+ geometry, 2020.8.5
Given a triangle $ABC, O$ is the center of the circumcircle, $M$ is the midpoint of $BC, W$ is the second intersection of the bisector of the angle $C$ with this circle. A line parallel to $BC$ passing through $W$, intersects$ AB$ at the point $K$ so that $BK = BO$. Find the measure of angle $WMB$.
(Anton Trygub)
2007 IMO Shortlist, 4
Consider five points $ A$, $ B$, $ C$, $ D$ and $ E$ such that $ ABCD$ is a parallelogram and $ BCED$ is a cyclic quadrilateral. Let $ \ell$ be a line passing through $ A$. Suppose that $ \ell$ intersects the interior of the segment $ DC$ at $ F$ and intersects line $ BC$ at $ G$. Suppose also that $ EF \equal{} EG \equal{} EC$. Prove that $ \ell$ is the bisector of angle $ DAB$.
[i]Author: Charles Leytem, Luxembourg[/i]
2005 Junior Balkan Team Selection Tests - Moldova, 5
Let $ABC$ be an acute-angled triangle, and let $F$ be the foot of its altitude from the vertex $C$. Let $M$ be the midpoint of the segment $CA$. Assume that $CF=BM$. Then the angle $MBC$ is equal to angle $FCA$ if and only if the triangle $ABC$ is equilateral.
2004 National Olympiad First Round, 1
If the circumradius of a regular $n$-gon is $1$ and the ratio of its perimeter over its area is $\dfrac{4\sqrt 3}{3}$, what is $n$?
$
\textbf{(A)}\ 3
\qquad\textbf{(B)}\ 4
\qquad\textbf{(C)}\ 5
\qquad\textbf{(D)}\ 6
\qquad\textbf{(E)}\ 8
$
1997 Hungary-Israel Binational, 2
The three squares $ACC_{1}A''$, $ABB_{1}'A'$, $BCDE$ are constructed externally on the sides of a triangle $ABC$. Let $P$ be the center of the square $BCDE$. Prove that the lines $A'C$, $A''B$, $PA$ are concurrent.
2006 APMO, 4
Let $A,B$ be two distinct points on a given circle $O$ and let $P$ be the midpoint of the line segment AB. Let $O_1$ be the circle tangent to the line $AB$ at $P$ and tangent to the circle $O$. Let $l$ be the tangent line, different from the line $AB$, to $O_1$ passing through $A$. Let $C$ be the intersection point, different from $A$, of $l$ and $O$. Let $Q$ be the midpoint of the line segment $BC$ and $O_2$ be the circle tangent to the line $BC$ at $Q$ and tangent to the line segment $AC$. Prove that the circle $O_2$ is tangent to the circle $O$.
2014 PUMaC Geometry A, 8
$ABCD$ is a cyclic quadrilateral with circumcenter $O$ and circumradius $7$. $AB$ intersects $CD$ at $E$, $DA$ intersects $CB$ at $F$. $OE=13$, $OF=14$. Let $\cos\angle FOE=\dfrac pq$, with $p$, $q$ coprime. Find $p+q$.
2015 Iran MO (3rd round), 1
Let $ABCD$ be the trapezoid such that $AB\parallel CD$. Let $E$ be an arbitrary point on $AC$. point $F$ lies on $BD$ such that $BE\parallel CF$. Prove that circumcircles of $\triangle ABF,\triangle BED$ and the line $AC$ are concurrent.
Mathley 2014-15, 4
Let $ABC$ be an acute triangle with $E, F$ being the reflections of $B,C$ about the line $AC, AB$ respectively. Point $D$ is the intersection of $BF$ and $CE$. If $K$ is the circumcircle of triangle $DEF$, prove that $AK$ is perpendicular to $BC$.
Nguyen Minh Ha, College of Pedagogical University of Hanoi
Cono Sur Shortlist - geometry, 2018.G4
Let $ABC$ be an acute triangle with $AC > AB$. Let $\Gamma$ be the circle circumscribed to the triangle $ABC$ and $D$ the midpoint of the smaller arc $BC$ of this circle. Let $I$ be the incenter of $ABC$ and let $E$ and $F$ be points on sides $AB$ and $AC$, respectively, such that $AE = AF$ and $I$ lies on the segment $EF$. Let $P$ be the second intersection point of the circumcircle of the triangle $AEF$ with $\Gamma$ with $P \ne A$. Let $G$ and $H$ be the intersection points of the lines $PE$ and $PF$ with $\Gamma$ different from $P$, respectively. Let $J$ and $K$ be the intersection points of lines $DG$ and $DH$ with lines AB and $AC$, respectively. Show that the line $JK$ passes through the midpoint of $BC$.