This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3882

2011 Croatia Team Selection Test, 3

Let $K$ and $L$ be the points on the semicircle with diameter $AB$. Denote intersection of $AK$ and $AL$ as $T$ and let $N$ be the point such that $N$ is on segment $AB$ and line $TN$ is perpendicular to $AB$. If $U$ is the intersection of perpendicular bisector of $AB$ an $KL$ and $V$ is a point on $KL$ such that angles $UAV$ and $UBV$ are equal. Prove that $NV$ is perpendicular to $KL$.

2023 Switzerland - Final Round, 1

Let $ABC$ be an acute triangle with incenter $I$. On its circumcircle, let $M_A$, $M_B$ and $M_C$ be the midpoints of minor arcs $BC, CA$ and $AB$, respectively. Prove that the reflection $M_A$ over the line $IM_B$ lies on the circumcircle of the triangle $IM_BM_C$.

2019 Belarusian National Olympiad, 11.1

[b]a)[/b] Find all real numbers $a$ such that the parabola $y=x^2-a$ and the hyperbola $y=1/x$ intersect each other in three different points. [b]b)[/b] Find the locus of centers of circumcircles of such triples of intersection points when $a$ takes all possible values. [i](I. Gorodnin)[/i]

2019 Estonia Team Selection Test, 11

Given a circle $\omega$ with radius $1$. Let $T$ be a set of triangles good, if the following conditions apply: (a) the circumcircle of each triangle in the set $T$ is $\omega$; (b) The interior of any two triangles in the set $T$ has no common point. Find all positive real numbers $t$, for which for each positive integer $n$ there is a good set of $n$ triangles, where the perimeter of each triangle is greater than $t$.

2014 China Team Selection Test, 4

Given circle $O$ with radius $R$, the inscribed triangle $ABC$ is an acute scalene triangle, where $AB$ is the largest side. $AH_A, BH_B,CH_C$ are heights on $BC,CA,AB$. Let $D$ be the symmetric point of $H_A$ with respect to $H_BH_C$, $E$ be the symmetric point of $H_B$ with respect to $H_AH_C$. $P$ is the intersection of $AD,BE$, $H$ is the orthocentre of $\triangle ABC$. Prove: $OP\cdot OH$ is fixed, and find this value in terms of $R$. (Edited)

2019 Saint Petersburg Mathematical Olympiad, 4

Given a convex quadrilateral $ABCD$. The medians of the triangle $ABC$ intersect at point $M$, and the medians of the triangle $ACD$ at point$ N$. The circle, circumscibed around the triangle $ACM$, intersects the segment $BD$ at the point $K$ lying inside the triangle $AMB$ . It is known that $\angle MAN = \angle ANC = 90^o$. Prove that $\angle AKD = \angle MKC$.

2010 IMO Shortlist, 1

Let $ABC$ be an acute triangle with $D, E, F$ the feet of the altitudes lying on $BC, CA, AB$ respectively. One of the intersection points of the line $EF$ and the circumcircle is $P.$ The lines $BP$ and $DF$ meet at point $Q.$ Prove that $AP = AQ.$ [i]Proposed by Christopher Bradley, United Kingdom[/i]

2011 Croatia Team Selection Test, 3

Let $K$ and $L$ be the points on the semicircle with diameter $AB$. Denote intersection of $AK$ and $AL$ as $T$ and let $N$ be the point such that $N$ is on segment $AB$ and line $TN$ is perpendicular to $AB$. If $U$ is the intersection of perpendicular bisector of $AB$ an $KL$ and $V$ is a point on $KL$ such that angles $UAV$ and $UBV$ are equal. Prove that $NV$ is perpendicular to $KL$.

2003 Iran MO (3rd Round), 6

let the incircle of a triangle ABC touch BC,AC,AB at A1,B1,C1 respectively. M and N are the midpoints of AB1 and AC1 respectively. MN meets A1C1 at T . draw two tangents TP and TQ through T to incircle. PQ meets MN at L and B1C1 meets PQ at K . assume I is the center of the incircle . prove IK is parallel to AL

2003 Romania Team Selection Test, 8

Two circles $\omega_1$ and $\omega_2$ with radii $r_1$ and $r_2$, $r_2>r_1$, are externally tangent. The line $t_1$ is tangent to the circles $\omega_1$ and $\omega_2$ at points $A$ and $D$ respectively. The parallel line $t_2$ to the line $t_1$ is tangent to the circle $\omega_1$ and intersects the circle $\omega_2$ at points $E$ and $F$. The line $t_3$ passing through $D$ intersects the line $t_2$ and the circle $\omega_2$ in $B$ and $C$ respectively, both different of $E$ and $F$ respectively. Prove that the circumcircle of the triangle $ABC$ is tangent to the line $t_1$. [i]Dinu Serbanescu[/i]

2013 Canada National Olympiad, 3

Let $G$ be the centroid of a right-angled triangle $ABC$ with $\angle BCA = 90^\circ$. Let $P$ be the point on ray $AG$ such that $\angle CPA = \angle CAB$, and let $Q$ be the point on ray $BG$ such that $\angle CQB = \angle ABC$. Prove that the circumcircles of triangles $AQG$ and $BPG$ meet at a point on side $AB$.

2012 Online Math Open Problems, 16

Let $ABC$ be a triangle with $AB = 4024$, $AC = 4024$, and $BC=2012$. The reflection of line $AC$ over line $AB$ meets the circumcircle of $\triangle{ABC}$ at a point $D\ne A$. Find the length of segment $CD$. [i]Ray Li.[/i]

2011 NIMO Summer Contest, 5

In equilateral triangle $ABC$, the midpoint of $\overline{BC}$ is $M$. If the circumcircle of triangle $MAB$ has area $36\pi$, then find the perimeter of the triangle. [i]Proposed by Isabella Grabski [/i]

2020 Iranian Geometry Olympiad, 3

In acute-angled triangle $ABC$ ($AC > AB$), point $H$ is the orthocenter and point $M$ is the midpoint of the segment $BC$. The median $AM$ intersects the circumcircle of triangle $ABC$ at $X$. The line $CH$ intersects the perpendicular bisector of $BC$ at $E$ and the circumcircle of the triangle $ABC$ again at $F$. Point $J$ lies on circle $\omega$, passing through $X, E,$ and $F$, such that $BCHJ$ is a trapezoid ($CB \parallel HJ$). Prove that $JB$ and $EM$ meet on $\omega$. [i]Proposed by Alireza Dadgarnia[/i]

2007 Indonesia TST, 1

Let $ P$ be a point in triangle $ ABC$, and define $ \alpha,\beta,\gamma$ as follows: \[ \alpha\equal{}\angle BPC\minus{}\angle BAC, \quad \beta\equal{}\angle CPA\minus{}\angle \angle CBA, \quad \gamma\equal{}\angle APB\minus{}\angle ACB.\] Prove that \[ PA\dfrac{\sin \angle BAC}{\sin \alpha}\equal{}PB\dfrac{\sin \angle CBA}{\sin \beta}\equal{}PC\dfrac{\sin \angle ACB}{\sin \gamma}.\]

2002 Pan African, 5

Let $\triangle{ABC}$ be an acute angled triangle. The circle with diameter AB intersects the sides AC and BC at points E and F respectively. The tangents drawn to the circle through E and F intersect at P. Show that P lies on the altitude through the vertex C.

2003 France Team Selection Test, 1

Let $B$ be a point on a circle $S_1$, and let $A$ be a point distinct from $B$ on the tangent at $B$ to $S_1$. Let $C$ be a point not on $S_1$ such that the line segment $AC$ meets $S_1$ at two distinct points. Let $S_2$ be the circle touching $AC$ at $C$ and touching $S_1$ at a point $D$ on the opposite side of $AC$ from $B$. Prove that the circumcentre of triangle $BCD$ lies on the circumcircle of triangle $ABC$.

2019 Dutch IMO TST, 4

Let $\Delta ABC$ be a scalene triangle. Points $D,E$ lie on side $\overline{AC}$ in the order, $A,E,D,C$. Let the parallel through $E$ to $BC$ intersect $\odot (ABD)$ at $F$, such that, $E$ and $F$ lie on the same side of $AB$. Let the parallel through $E$ to $AB$ intersect $\odot (BDC)$ at $G$, such that, $E$ and $G$ lie on the same side of $BC$. Prove, Points $D,F,E,G$ are concyclic

1998 Korea Junior Math Olympiad, 3

$O$ is the circumcenter of $ABC$, and $H$ is the orthocenter of $ABC$. If $D$ is a midpoint of $AC$ and $E$ is the intersection of $BO$ and $ABC$'s circumcircle not $B$, show that three points $H, D, E$ are collinear.

2005 IMO Shortlist, 5

Let $\triangle ABC$ be an acute-angled triangle with $AB \not= AC$. Let $H$ be the orthocenter of triangle $ABC$, and let $M$ be the midpoint of the side $BC$. Let $D$ be a point on the side $AB$ and $E$ a point on the side $AC$ such that $AE=AD$ and the points $D$, $H$, $E$ are on the same line. Prove that the line $HM$ is perpendicular to the common chord of the circumscribed circles of triangle $\triangle ABC$ and triangle $\triangle ADE$.

2005 District Olympiad, 3

Let $O$ be a point equally distanced from the vertices of the tetrahedron $ABCD$. If the distances from $O$ to the planes $(BCD)$, $(ACD)$, $(ABD)$ and $(ABC)$ are equal, prove that the sum of the distances from a point $M \in \textrm{int}[ABCD]$, to the four planes, is constant.

JBMO Geometry Collection, 2014

Consider an acute triangle $ABC$ of area $S$. Let $CD \perp AB$ ($D \in AB$), $DM \perp AC$ ($M \in AC$) and $DN \perp BC$ ($N \in BC$). Denote by $H_1$ and $H_2$ the orthocentres of the triangles $MNC$, respectively $MND$. Find the area of the quadrilateral $AH_1BH_2$ in terms of $S$.

2015 Iran MO (3rd round), 2

Let $ABC$ be a triangle with orthocenter $H$ and circumcenter $O$. Let $K$ be the midpoint of $AH$. point $P$ lies on $AC$ such that $\angle BKP=90^{\circ}$. Prove that $OP\parallel BC$.

1985 IMO, 5

A circle with center $O$ passes through the vertices $A$ and $C$ of the triangle $ABC$ and intersects the segments $AB$ and $BC$ again at distinct points $K$ and $N$ respectively. Let $M$ be the point of intersection of the circumcircles of triangles $ABC$ and $KBN$ (apart from $B$). Prove that $\angle OMB=90^{\circ}$.

2021 OMpD, 5

Let $ABC$ be a triangle with $\angle BAC > 90^o$ and with $AB < AC$. Let $r$ be the internal bisector of $\angle ACB$ and let $s$ be the perpendicular, through $A$, on $r$. Denote by $F$ the intersection of $r$ and $ s$, and denote by $E$ the intersection of $s$ with the segment $BC$. Let also $D$ be the symmetric of $A$ with respect to the line $BF$. Assuming that the circumcircle of triangle $EAC$ is tangent to line $AB$ and $ D$ lies on $r$, determine the value of $\angle CDB$.