This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3882

1996 AMC 12/AHSME, 19

The midpoints of the sides of a regular hexagon $ABCDEF$ are joined to form a smaller hexagon. What fraction of the area of $ABCDEF$ is enclosed by the smaller hexagon? [asy] size(130); pair A, B, C, D, E, F, G, H, I, J, K, L; A = dir(120); B = dir(60); C = dir(0); D = dir(-60); E = dir(-120); F = dir(180); draw(A--B--C--D--E--F--cycle); dot(A); dot(B); dot(C); dot(D); dot(E); dot(F); G = midpoint(A--B); H = midpoint(B--C); I = midpoint(C--D); J = midpoint(D--E); K = midpoint(E--F); L = midpoint(F--A); draw(G--H--I--J--K--L--cycle); label("$A$", A, dir(120)); label("$B$", B, dir(60)); label("$C$", C, dir(0)); label("$D$", D, dir(-60)); label("$E$", E, dir(-120)); label("$F$", F, dir(180)); [/asy] $\textbf{(A)}\ \displaystyle \frac{1}{2} \qquad \textbf{(B)}\ \displaystyle \frac{\sqrt 3}{3} \qquad \textbf{(C)}\ \displaystyle \frac{2}{3} \qquad \textbf{(D)}\ \displaystyle \frac{3}{4} \qquad \textbf{(E)}\ \displaystyle \frac{\sqrt 3}{2}$

2020 Hong Kong TST, 1

Let $\Delta ABC$ be an acute triangle with incenter $I$ and orthocenter $H$. $AI$ meets the circumcircle of $\Delta ABC$ again at $M$. Suppose the length $IM$ is exactly the circumradius of $\Delta ABC$. Show that $AH\geq AI$.

2013 Silk Road, 2

Circle with center $I$, inscribed in a triangle $ABC$ , touches the sides $BC$ and $AC$ at points $A_1$ and $B_1$ respectively. On rays $A_1I$ and $B_1I$, respectively, let be the points $A_2$ and $B_2$ such that $IA_2=IB_2=R$, where $R$is the radius of the circumscribed circle of the triangle $ABC$. Prove that: a) $AA_2 = BB_2 = OI$ where $O$ is the center of the circumscribed circle of the triangle $ABC$, b) lines $AA_2$ and $BB_2$ intersect on the circumcircle of the triangle $ABC$.

2019 South East Mathematical Olympiad, 2

Two circles $\Gamma_1$ and $\Gamma_2$ intersect at $A,B$. Points $C,D$ lie on $\Gamma_1$, points $E,F$ lie on $\Gamma_2$ such that $A,B$ lies on segments $CE,DF$ respectively and segments $CE,DF$ do not intersect. Let $CF$ meet $\Gamma_1,\Gamma_2$ again at $K,L$ respectively, and $DE$ meet $\Gamma_1,\Gamma_2$ at $M,N$ respectively. If the circumcircles of $\triangle ALM$ and $\triangle BKN$ are tangent, prove that the radii of these two circles are equal.

1988 IMO Shortlist, 3

The triangle $ ABC$ is inscribed in a circle. The interior bisectors of the angles $ A,B$ and $ C$ meet the circle again at $ A', B'$ and $ C'$ respectively. Prove that the area of triangle $ A'B'C'$ is greater than or equal to the area of triangle $ ABC.$

2012 Paraguay Mathematical Olympiad, 5

Let $ABC$ be an equilateral triangle. Let $Q$ be a random point on $BC$, and let $P$ be the meeting point of $AQ$ and the circumscribed circle of $\triangle ABC$. Prove that $\frac{1}{PQ}=\frac{1}{PB}+\frac{1}{PC}$.

Cono Sur Shortlist - geometry, 2005.G5

Let $O$ be the circumcenter of an acute triangle $ABC$ and $A_1$ a point of the minor arc $BC$ of the circle $ABC$ . Let $A_2$ and $A_3$ be points on sides $AB$ and $AC$ respectively such that $\angle BA_1A_2=\angle OAC$ and $\angle CA_1A_3=\angle OAB$ . Points $B_2, B_3, C_2$ and $C_3$ are similarly constructed, with $B_2$ in $BC, B_3$ in $AB, C_2$ in $AC$ and $C_3$ in $BC$. Prove that lines $A_2A_3, B_2B_3$ and $C_2C_3$ are concurrent.

2019 Final Mathematical Cup, 1

Let $ABC$ be an acute triangle with $AB<AC<BC$ and let $D$ be a point on it's extension of $BC$ towards $C$. Circle $c_1$, with center $A$ and radius $AD$, intersects lines $AC,AB$ and $CB$ at points $E,F$, and $G$ respectively. Circumscribed circle $c_2$ of triangle $AFG$ intersects again lines $FE,BC,GE$ and $DF$ at points $J,H,H' $ and $J'$ respectively. Circumscribed circle $c_3$ of triangle $ADE$ intersects again lines $FE,BC,GE$ and $DF$ at points $I,K,K' $ and $I' $ respectively. Prove that the quadrilaterals $HIJK$ and $H'I'J'K '$ are cyclic and the centers of their circumscribed circles coincide. by Evangelos Psychas, Greece

2007 Indonesia TST, 1

Let $ ABCD$ be a cyclic quadrilateral and $ O$ be the intersection of diagonal $ AC$ and $ BD$. The circumcircles of triangle $ ABO$ and the triangle $ CDO$ intersect at $ K$. Let $ L$ be a point such that the triangle $ BLC$ is similar to $ AKD$ (in that order). Prove that if $ BLCK$ is a convex quadrilateral, then it has an incircle.

2008 Harvard-MIT Mathematics Tournament, 32

Cyclic pentagon $ ABCDE$ has side lengths $ AB\equal{}BC\equal{}5$, $ CD\equal{}DE\equal{}12$, and $ AE \equal{} 14$. Determine the radius of its circumcircle.

1996 IMO Shortlist, 5

Let $ ABCDEF$ be a convex hexagon such that $ AB$ is parallel to $ DE$, $ BC$ is parallel to $ EF$, and $ CD$ is parallel to $ FA$. Let $ R_{A},R_{C},R_{E}$ denote the circumradii of triangles $ FAB,BCD,DEF$, respectively, and let $ P$ denote the perimeter of the hexagon. Prove that \[ R_{A} \plus{} R_{C} \plus{} R_{E}\geq \frac {P}{2}. \]

2010 Kazakhstan National Olympiad, 5

Let $O$ be the circumcircle of acute triangle $ABC$, $AD$-altitude of $ABC$ ($ D \in BC$), $ AD \cap CO =E$, $M$-midpoint of $AE$, $F$-feet of perpendicular from $C$ to $AO$. Proved that point of intersection $OM$ and $BC$ lies on circumcircle of triangle $BOF$

2011 Serbia National Math Olympiad, 3

Let $H$ be orthocenter and $O$ circumcenter of an acuted angled triangle $ABC$. $D$ and $E$ are feets of perpendiculars from $A$ and $B$ on $BC$ and $AC$ respectively. Let $OD$ and $OE$ intersect $BE$ and $AD$ in $K$ and $L$, respectively. Let $X$ be intersection of circumcircles of $HKD$ and $HLE$ different than $H$, and $M$ is midpoint of $AB$. Prove that $K, L, M$ are collinear iff $X$ is circumcenter of $EOD$.

2021 JHMT HS, 8

Triangle $ABC,$ with $BC = 48,$ is inscribed in a circle $\Omega$ of radius $49\sqrt{3}.$ There is a unique circle $\omega$ that is tangent to $\overline{AB}$ and $\overline{AC}$ and internally tangent to $\Omega.$ Let $D,$ $E,$ and $F$ be the points at which $\omega$ is tangent to $\Omega,$ $\overline{AB},$ and $\overline{AC},$ respectively. The rays $\overrightarrow{DE}$ and $\overrightarrow{DF}$ intersect $\Omega$ at points $X$ and $Y,$ respectively, such that $X \neq D$ and $Y \neq D.$ Compute $XY.$

1969 IMO Shortlist, 47

$C$ is a point on the semicircle diameter $AB$, between $A$ and $B$. $D$ is the foot of the perpendicular from $C$ to $AB$. The circle $K_1$ is the incircle of $ABC$, the circle $K_2$ touches $CD,DA$ and the semicircle, the circle $K_3$ touches $CD,DB$ and the semicircle. Prove that $K_1,K_2$ and $K_3$ have another common tangent apart from $AB$.

2019 Kurschak Competition, 1

In an acute triangle $\bigtriangleup ABC$, $AB<AC<BC$, and $A_1,B_1,C_1$ are the projections of $A,B,C$ to the corresponding sides. Let the reflection of $B_1$ wrt $CC_1$ be $Q$, and the reflection of $C_1$ wrt $BB_1$ be $P$. Prove that the circumcirle of $A_1PQ$ passes through the midpoint of $BC$.

2010 Tuymaada Olympiad, 2

Let $ABC$ be an acute triangle, $H$ its orthocentre, $D$ a point on the side $[BC]$, and $P$ a point such that $ADPH$ is a parallelogram. Show that $\angle BPC > \angle BAC$.

1972 IMO Longlists, 29

Let $A,B,C$ be points on the sides $B_1C_1, C_1A_1,A_1B_1$ of a triangle $A_1B_1C_1$ such that $A_1A,B_1B,C_1C$ are the bisectors of angles of the triangle. We have that $AC = BC$ and $A_1C_1 \neq B_1C_1.$ $(a)$ Prove that $C_1$ lies on the circumcircle of the triangle $ABC$. $(b)$ Suppose that $\angle BAC_1 =\frac{\pi}{6};$ find the form of triangle $ABC$.

2022 Germany Team Selection Test, 3

Let $ABC$ be a triangle with orthocenter $H$ and circumcenter $O$. Let $P$ be a point in the plane such that $AP \perp BC$. Let $Q$ and $R$ be the reflections of $P$ in the lines $CA$ and $AB$, respectively. Let $Y$ be the orthogonal projection of $R$ onto $CA$. Let $Z$ be the orthogonal projection of $Q$ onto $AB$. Assume that $H \neq O$ and $Y \neq Z$. Prove that $YZ \perp HO$. [asy] import olympiad; unitsize(30); pair A,B,C,H,O,P,Q,R,Y,Z,Q2,R2,P2; A = (-14.8, -6.6); B = (-10.9, 0.3); C = (-3.1, -7.1); O = circumcenter(A,B,C); H = orthocenter(A,B,C); P = 1.2 * H - 0.2 * A; Q = reflect(A, C) * P; R = reflect(A, B) * P; Y = foot(R, C, A); Z = foot(Q, A, B); P2 = foot(A, B, C); Q2 = foot(P, C, A); R2 = foot(P, A, B); draw(B--(1.6*A-0.6*B)); draw(B--C--A); draw(P--R, blue); draw(R--Y, red); draw(P--Q, blue); draw(Q--Z, red); draw(A--P2, blue); draw(O--H, darkgreen+linewidth(1.2)); draw((1.4*Z-0.4*Y)--(4.6*Y-3.6*Z), red+linewidth(1.2)); draw(rightanglemark(R,Y,A,10), red); draw(rightanglemark(Q,Z,B,10), red); draw(rightanglemark(C,Q2,P,10), blue); draw(rightanglemark(A,R2,P,10), blue); draw(rightanglemark(B,P2,H,10), blue); label("$\textcolor{blue}{H}$",H,NW); label("$\textcolor{blue}{P}$",P,N); label("$A$",A,W); label("$B$",B,N); label("$C$",C,S); label("$O$",O,S); label("$\textcolor{blue}{Q}$",Q,E); label("$\textcolor{blue}{R}$",R,W); label("$\textcolor{red}{Y}$",Y,S); label("$\textcolor{red}{Z}$",Z,NW); dot(A, filltype=FillDraw(black)); dot(B, filltype=FillDraw(black)); dot(C, filltype=FillDraw(black)); dot(H, filltype=FillDraw(blue)); dot(P, filltype=FillDraw(blue)); dot(Q, filltype=FillDraw(blue)); dot(R, filltype=FillDraw(blue)); dot(Y, filltype=FillDraw(red)); dot(Z, filltype=FillDraw(red)); dot(O, filltype=FillDraw(black)); [/asy]

2006 Germany Team Selection Test, 2

In an acute triangle $ABC$, let $D$, $E$, $F$ be the feet of the perpendiculars from the points $A$, $B$, $C$ to the lines $BC$, $CA$, $AB$, respectively, and let $P$, $Q$, $R$ be the feet of the perpendiculars from the points $A$, $B$, $C$ to the lines $EF$, $FD$, $DE$, respectively. Prove that $p\left(ABC\right)p\left(PQR\right) \ge \left(p\left(DEF\right)\right)^{2}$, where $p\left(T\right)$ denotes the perimeter of triangle $T$ . [i]Proposed by Hojoo Lee, Korea[/i]

2004 Germany Team Selection Test, 3

Given six real numbers $a$, $b$, $c$, $x$, $y$, $z$ such that $0 < b-c < a < b+c$ and $ax + by + cz = 0$. What is the sign of the sum $ayz + bzx + cxy$ ?

2005 Moldova Team Selection Test, 1

Let $\Gamma$ be a circle and let $d$ be a line such that $\Gamma$ and $d$ have no common points. Further, let $AB$ be a diameter of the circle $\Gamma$; assume that this diameter $AB$ is perpendicular to the line $d$, and the point $B$ is nearer to the line $d$ than the point $A$. Let $C$ be an arbitrary point on the circle $\Gamma$, different from the points $A$ and $B$. Let $D$ be the point of intersection of the lines $AC$ and $d$. One of the two tangents from the point $D$ to the circle $\Gamma$ touches this circle $\Gamma$ at a point $E$; hereby, we assume that the points $B$ and $E$ lie in the same halfplane with respect to the line $AC$. Denote by $F$ the point of intersection of the lines $BE$ and $d$. Let the line $AF$ intersect the circle $\Gamma$ at a point $G$, different from $A$. Prove that the reflection of the point $G$ in the line $AB$ lies on the line $CF$.

2012 Tuymaada Olympiad, 3

Point $P$ is taken in the interior of the triangle $ABC$, so that \[\angle PAB = \angle PCB = \dfrac {1} {4} (\angle A + \angle C).\] Let $L$ be the foot of the angle bisector of $\angle B$. The line $PL$ meets the circumcircle of $\triangle APC$ at point $Q$. Prove that $QB$ is the angle bisector of $\angle AQC$. [i]Proposed by S. Berlov[/i]

2008 Moldova Team Selection Test, 3

Let $ \Gamma(I,r)$ and $ \Gamma(O,R)$ denote the incircle and circumcircle, respectively, of a triangle $ ABC$. Consider all the triangels $ A_iB_iC_i$ which are simultaneously inscribed in $ \Gamma(O,R)$ and circumscribed to $ \Gamma(I,r)$. Prove that the centroids of these triangles are concyclic.

2001 All-Russian Olympiad, 3

Points $A_1, B_1, C_1$ inside an acute-angled triangle $ABC$ are selected on the altitudes from $A, B, C$ respectively so that the sum of the areas of triangles $ABC_1, BCA_1$, and $CAB_1$ is equal to the area of triangle $ABC$. Prove that the circumcircle of triangle $A_1B_1C_1$ passes through the orthocenter $H$ of triangle $ABC$.