This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3882

1993 IMO, 2

Let $A$, $B$, $C$, $D$ be four points in the plane, with $C$ and $D$ on the same side of the line $AB$, such that $AC \cdot BD = AD \cdot BC$ and $\angle ADB = 90^{\circ}+\angle ACB$. Find the ratio \[\frac{AB \cdot CD}{AC \cdot BD}, \] and prove that the circumcircles of the triangles $ACD$ and $BCD$ are orthogonal. (Intersecting circles are said to be orthogonal if at either common point their tangents are perpendicuar. Thus, proving that the circumcircles of the triangles $ACD$ and $BCD$ are orthogonal is equivalent to proving that the tangents to the circumcircles of the triangles $ACD$ and $BCD$ at the point $C$ are perpendicular.)

2010 India IMO Training Camp, 1

Let $ABC$ be a triangle in which $BC<AC$. Let $M$ be the mid-point of $AB$, $AP$ be the altitude from $A$ on $BC$, and $BQ$ be the altitude from $B$ on to $AC$. Suppose that $QP$ produced meets $AB$ (extended) at $T$. If $H$ is the orthocenter of $ABC$, prove that $TH$ is perpendicular to $CM$.

2009 Ukraine National Mathematical Olympiad, 3

In triangle $ABC$ points $M, N$ are midpoints of $BC, CA$ respectively. Point $P$ is inside $ABC$ such that $\angle BAP = \angle PCA = \angle MAC .$ Prove that $\angle PNA = \angle AMB .$

2011 Korea - Final Round, 2

$ABC$ is a triangle such that $AC<AB<BC$ and $D$ is a point on side $AB$ satisfying $AC=AD$. The circumcircle of $ABC$ meets with the bisector of angle $A$ again at $E$ and meets with $CD$ again at $F$. $K$ is an intersection point of $BC$ and $DE$. Prove that $CK=AC$ is a necessary and sufficient condition for $DK \cdot EF = AC \cdot DF$.

2009 Iran Team Selection Test, 10

Let $ ABC$ be a triangle and $ AB\ne AC$ . $ D$ is a point on $ BC$ such that $ BA \equal{} BD$ and $ B$ is between $ C$ and $ D$ . Let $ I_{c}$ be center of the circle which touches $ AB$ and the extensions of $ AC$ and $ BC$ . $ CI_{c}$ intersect the circumcircle of $ ABC$ again at $ T$ . If $ \angle TDI_{c} \equal{} \frac {\angle B \plus{} \angle C}{4}$ then find $ \angle A$

2014 Stanford Mathematics Tournament, 5

Let $ABC$ be a triangle where $\angle BAC = 30^\circ$. Construct $D$ in $\triangle ABC$ such that $\angle ABD = \angle ACD = 30^\circ$. Let the circumcircle of $\triangle ABD$ intersect $AC$ at $X$. Let the circumcircle of $\triangle ACD$ intersect $AB$ at $Y$. Given that $DB - DC = 10$ and $BC = 20$, find $AX \cdot AY$.

1988 China Team Selection Test, 3

In triangle $ABC$, $\angle C = 30^{\circ}$, $O$ and $I$ are the circumcenter and incenter respectively, Points $D \in AC$ and $E \in BC$, such that $AD = BE = AB$. Prove that $OI = DE$ and $OI \bot DE$.

2008 Kazakhstan National Olympiad, 2

Suppose that $ B_1$ is the midpoint of the arc $ AC$, containing $ B$, in the circumcircle of $ \triangle ABC$, and let $ I_b$ be the $ B$-excircle's center. Assume that the external angle bisector of $ \angle ABC$ intersects $ AC$ at $ B_2$. Prove that $ B_2I$ is perpendicular to $ B_1I_B$, where $ I$ is the incenter of $ \triangle ABC$.

2013 All-Russian Olympiad, 3

The incircle of triangle $ ABC $ has centre $I$ and touches the sides $ BC $, $ CA $, $ AB $ at points $ A_1 $, $ B_1 $, $ C_1 $, respectively. Let $ I_a $, $ I_b $, $ I_c $ be excentres of triangle $ ABC $, touching the sides $ BC $, $ CA $, $ AB $ respectively. The segments $ I_aB_1 $ and $ I_bA_1 $ intersect at $ C_2 $. Similarly, segments $ I_bC_1 $ and $ I_cB_1 $ intersect at $ A_2 $, and the segments $ I_cA_1 $ and $ I_aC_1 $ at $ B_2 $. Prove that $ I $ is the center of the circumcircle of the triangle $ A_2B_2C_2 $. [i]L. Emelyanov, A. Polyansky[/i]

2018-IMOC, G2

Given $\vartriangle ABC$ with circumcircle $\Omega$. Assume $\omega_a, \omega_b, \omega_c$ are circles which tangent internally to $\Omega$ at $T_a,T_b, T_c $ and tangent to $BC,CA,AB$ at $P_a, P_b, P_c$, respectively. If $AT_a,BT_b,CT_c$ are collinear, prove that $AP_a,BP_b,CP_c$ are collinear.

2011 Argentina Team Selection Test, 3

Let $ABCD$ be a trapezoid with bases $BC \parallel AD$, where $AD > BC$, and non-parallel legs $AB$ and $CD$. Let $M$ be the intersection of $AC$ and $BD$. Let $\Gamma_1$ be a circumference that passes through $M$ and is tangent to $AD$ at point $A$; let $\Gamma_2$ be a circumference that passes through $M$ and is tangent to $AD$ at point $D$. Let $S$ be the intersection of the lines $AB$ and $CD$, $X$ the intersection of $\Gamma_1$ with the line $AS$, $Y$ the intesection of $\Gamma_2$ with the line $DS$, and $O$ the circumcenter of triangle $ASD$. Show that $SO \perp XY$.

JBMO Geometry Collection, 2003

Let $D$, $E$, $F$ be the midpoints of the arcs $BC$, $CA$, $AB$ on the circumcircle of a triangle $ABC$ not containing the points $A$, $B$, $C$, respectively. Let the line $DE$ meets $BC$ and $CA$ at $G$ and $H$, and let $M$ be the midpoint of the segment $GH$. Let the line $FD$ meet $BC$ and $AB$ at $K$ and $J$, and let $N$ be the midpoint of the segment $KJ$. a) Find the angles of triangle $DMN$; b) Prove that if $P$ is the point of intersection of the lines $AD$ and $EF$, then the circumcenter of triangle $DMN$ lies on the circumcircle of triangle $PMN$.

1993 Polish MO Finals, 3

Find out whether it is possible to determine the volume of a tetrahedron knowing the areas of its faces and its circumradius.

2012 Olympic Revenge, 6

Let $ABC$ be an scalene triangle and $I$ and $H$ its incenter, ortocenter respectively. The incircle touchs $BC$, $CA$ and $AB$ at $D,E$ an $F$. $DF$ and $AC$ intersects at $K$ while $EF$ and $BC$ intersets at $M$. Shows that $KM$ cannot be paralel to $IH$. PS1: The original problem without the adaptation apeared at the Brazilian Olympic Revenge 2011 but it was incorrect. PS2:The Brazilian Olympic Revenge is a competition for teachers, and the problems are created by the students. Sorry if I had some English mistakes here.

2012 Sharygin Geometry Olympiad, 16

Given right-angled triangle $ABC$ with hypothenuse $AB$. Let $M$ be the midpoint of $AB$ and $O$ be the center of circumcircle $\omega$ of triangle $CMB$. Line $AC$ meets $\omega$ for the second time in point $K$. Segment $KO$ meets the circumcircle of triangle $ABC$ in point $L$. Prove that segments $AL$ and $KM$ meet on the circumcircle of triangle $ACM$.

2007 Indonesia TST, 1

Given triangle $ ABC$ and its circumcircle $ \Gamma$, let $ M$ and $ N$ be the midpoints of arcs $ BC$ (that does not contain $ A$) and $ CA$ (that does not contain $ B$), repsectively. Let $ X$ be a variable point on arc $ AB$ that does not contain $ C$. Let $ O_1$ and $ O_2$ be the incenter of triangle $ XAC$ and $ XBC$, respectively. Let the circumcircle of triangle $ XO_1O_2$ meets $ \Gamma$ at $ Q$. (a) Prove that $ QNO_1$ and $ QMO_2$ are similar. (b) Find the locus of $ Q$ as $ X$ varies.

1997 Bosnia and Herzegovina Team Selection Test, 2

In isosceles triangle $ABC$ with base side $AB$, on side $BC$ it is given point $M$. Let $O$ be a circumcenter and $S$ incenter of triangle $ABC$. Prove that $$ SM \mid \mid AC \Leftrightarrow OM \perp BS$$

2017 Azerbaijan EGMO TST, 1

Given an equilateral triangle $ABC$ and a point $P$ so that the distances $P$ to $A$ and to $C$ are not farther than the distances $P$ to $B$. Prove that $PB = PA + PC$ if and only if $P$ lies on the circumcircle of $\vartriangle ABC$.

2012 EGMO, 1

Let $ABC$ be a triangle with circumcentre $O$. The points $D,E,F$ lie in the interiors of the sides $BC,CA,AB$ respectively, such that $DE$ is perpendicular to $CO$ and $DF$ is perpendicular to $BO$. (By interior we mean, for example, that the point $D$ lies on the line $BC$ and $D$ is between $B$ and $C$ on that line.) Let $K$ be the circumcentre of triangle $AFE$. Prove that the lines $DK$ and $BC$ are perpendicular. [i]Netherlands (Merlijn Staps)[/i]

1996 India National Olympiad, 2

Let $C_1$ and $C_2$ be two concentric circles in the plane with radii $R$ and $3R$ respectively. Show that the orthocenter of any triangle inscribed in circle $C_1$ lies in the interior of circle $C_2$. Conversely, show that every point in the interior of $C_2$ is the orthocenter of some triangle inscribed in $C_1$.

2017 China Team Selection Test, 4

Given a circle with radius 1 and 2 points C, D given on it. Given a constant l with $0<l\le 2$. Moving chord of the circle AB=l and ABCD is a non-degenerated convex quadrilateral. AC and BD intersects at P. Find the loci of the circumcenters of triangles ABP and BCP.

2011 IMO Shortlist, 2

Let $A_1A_2A_3A_4$ be a non-cyclic quadrilateral. Let $O_1$ and $r_1$ be the circumcentre and the circumradius of the triangle $A_2A_3A_4$. Define $O_2,O_3,O_4$ and $r_2,r_3,r_4$ in a similar way. Prove that \[\frac{1}{O_1A_1^2-r_1^2}+\frac{1}{O_2A_2^2-r_2^2}+\frac{1}{O_3A_3^2-r_3^2}+\frac{1}{O_4A_4^2-r_4^2}=0.\] [i]Proposed by Alexey Gladkich, Israel[/i]

2003 China Team Selection Test, 2

Denote by $\left(ABC\right)$ the circumcircle of a triangle $ABC$. Let $ABC$ be an isosceles right-angled triangle with $AB=AC=1$ and $\measuredangle CAB=90^{\circ}$. Let $D$ be the midpoint of the side $BC$, and let $E$ and $F$ be two points on the side $BC$. Let $M$ be the point of intersection of the circles $\left(ADE\right)$ and $\left(ABF\right)$ (apart from $A$). Let $N$ be the point of intersection of the line $AF$ and the circle $\left(ACE\right)$ (apart from $A$). Let $P$ be the point of intersection of the line $AD$ and the circle $\left(AMN\right)$. Find the length of $AP$.

2005 JBMO Shortlist, 6

Let $C_1,C_2$ be two circles intersecting at points $A,P$ with centers $O,K$ respectively. Let $B,C$ be the symmetric of $A$ wrt $O,K$ in circles $C_1,C_2 $ respectively. A random line passing through $A$ intersects circles $C_1,C_2$ at $D,E$ respectively. Prove that the center of circumcircle of triangle $DEP$ lies on the circumcircle of triangle $OKP$.

2010 All-Russian Olympiad, 3

Let $O$ be the circumcentre of the acute non-isosceles triangle $ABC$. Let $P$ and $Q$ be points on the altitude $AD$ such that $OP$ and $OQ$ are perpendicular to $AB$ and $AC$ respectively. Let $M$ be the midpoint of $BC$ and $S$ be the circumcentre of triangle $OPQ$. Prove that $\angle BAS =\angle CAM$.