This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3882

Kyiv City MO Seniors 2003+ geometry, 2012.10.4

The triangle $ABC$ with $AB> AC$ is inscribed in a circle, the angle bisector of $\angle BAC$ intersects the side $BC$ of the triangle at the point $K$, and the circumscribed circle at the point $M$. The midline of $\Delta ABC$, which is parallel to the side $AB$, intersects $AM$ at the point $O$, the line $CO$ intersects the line $AB$ at the point $N$. Prove that a circle can be circumscribed around the quadrilateral $BNKM$. (Nagel Igor)

KoMaL A Problems 2023/2024, A. 871

Let $ABC$ be an obtuse triangle, and let $H$ denote its orthocenter. Let $\omega_A$ denote the circle with center $A$ and radius $AH$. Let $\omega_B$ and $\omega_C$ be defined in a similar way. For all points $X$ in the plane of triangle $ABC$ let circle $\Omega(X)$ be defined in the following way (if possible): take the polars of point $X$ with respect to circles $\omega_A$, $\omega_B$ and $\omega_C$, and let $\Omega(X)$ be the circumcircle of the triangle defined by these three lines. With a possible exception of finitely many points find the locus of points $X$ for which point $X$ lies on circle $\Omega(X)$. [i]Proposed by Vilmos Molnár-Szabó, Budapest[/i]

2022 Macedonian Mathematical Olympiad, Problem 2

Let $ABCD$ be cyclic quadrilateral and $E$ the midpoint of $AC$. The circumcircle of $\triangle CDE$ intersect the side $BC$ at $F$, which is different from $C$. If $B'$ is the reflection of $B$ across $F$, prove that $EF$ is tangent to the circumcircle of $\triangle B'DF$. [i]Proposed by Nikola Velov[/i]

2009 Sharygin Geometry Olympiad, 7

Let $s$ be the circumcircle of triangle $ABC, L$ and $W$ be common points of angle's $A$ bisector with side $BC$ and $s$ respectively, $O$ be the circumcenter of triangle $ACL$. Restore triangle $ABC$, if circle $s$ and points $W$ and $O$ are given. (D.Prokopenko)

2013 India IMO Training Camp, 2

In a triangle $ABC$, let $I$ denote its incenter. Points $D, E, F$ are chosen on the segments $BC, CA, AB$, respectively, such that $BD + BF = AC$ and $CD + CE = AB$. The circumcircles of triangles $AEF, BFD, CDE$ intersect lines $AI, BI, CI$, respectively, at points $K, L, M$ (different from $A, B, C$), respectively. Prove that $K, L, M, I$ are concyclic.

2012 Bosnia And Herzegovina - Regional Olympiad, 3

Quadrilateral $ABCD$ is cyclic. Line through point $D$ parallel with line $BC$ intersects $CA$ in point $P$, line $AB$ in point $Q$ and circumcircle of $ABCD$ in point $R$. Line through point $D$ parallel with line $AB$ intersects $AC$ in point $S$, line $BC$ in point $T$ and circumcircle of $ABCD$ in point $U$. If $PQ=QR$, prove that $ST=TU$

1997 Brazil Team Selection Test, Problem 1

Let $ABC$ be a triangle and $L$ its circumscribed circle. The internal bisector of angle $A$ meets $BC$ at point $P$. Let $L_1$ be the circle tangent to $AP,BP$ and $L$. Similarly, let $L_2$ be the circle tangent to $AP,CP$ and $L$. Prove that the tangency points of $L_1$ and $L_2$ with $AP$ coincide.

2004 Balkan MO, 3

Let $O$ be an interior point of an acute triangle $ABC$. The circles with centers the midpoints of its sides and passing through $O$ mutually intersect the second time at the points $K$, $L$ and $M$ different from $O$. Prove that $O$ is the incenter of the triangle $KLM$ if and only if $O$ is the circumcenter of the triangle $ABC$.

2019 Junior Balkan Team Selection Tests - Romania, 3

Let $ABC$ be a triangle in which $AB < AC, D$ is the foot of the altitude from $A, H$ is the orthocenter, $O$ is the circumcenter, $M$ is the midpoint of the side $BC, A'$ is the reflection of $A$ across $O$, and $S$ is the intersection of the tangents at $B$ and $C$ to the circumcircle. The tangent at $A'$ to the circumcircle intersects $SC$ and $SB$ at $X$ and $Y$ , respectively. If $M,S,X,Y$ are concyclic, prove that lines $OD$ and $SA'$ are parallel.

1986 Tournament Of Towns, (110) 4

We are given the square $ABCD$. On sides $AB$ and $CD$ we are given points $ K$ and $L$ respectively, and on segment $KL$ we are given point $M$ . Prove that the second intersection point (i.e. the one other than $M$) of the intersection points of circles circumscribed around triangles $AKM$ and $MLC$ lies on the diagonal $AC$. (V . N . Dubrovskiy)

2015 Iran Team Selection Test, 6

$ABCD$ is a circumscribed and inscribed quadrilateral. $O$ is the circumcenter of the quadrilateral. $E,F$ and $S$ are the intersections of $AB,CD$ , $AD,BC$ and $AC,BD$ respectively. $E'$ and $F'$ are points on $AD$ and $AB$ such that $A\hat{E}E'=E'\hat{E}D$ and $A\hat{F}F'=F'\hat{F}B$. $X$ and $Y$ are points on $OE'$ and $OF'$ such that $\frac{XA}{XD}=\frac{EA}{ED}$ and $\frac{YA}{YB}=\frac{FA}{FB}$. $M$ is the midpoint of arc $BD$ of $(O)$ which contains $A$. Prove that the circumcircles of triangles $OXY$ and $OAM$ are coaxal with the circle with diameter $OS$.

2000 IMO, 6

Let $ AH_1, BH_2, CH_3$ be the altitudes of an acute angled triangle $ ABC$. Its incircle touches the sides $ BC, AC$ and $ AB$ at $ T_1, T_2$ and $ T_3$ respectively. Consider the symmetric images of the lines $ H_1H_2, H_2H_3$ and $ H_3H_1$ with respect to the lines $ T_1T_2, T_2T_3$ and $ T_3T_1$. Prove that these images form a triangle whose vertices lie on the incircle of $ ABC$.

2025 Israel TST, P2

Triangle $\triangle ABC$ is inscribed in circle $\Omega$. Let $I$ denote its incenter and $I_A$ its $A$-excenter. Let $N$ denote the midpoint of arc $BAC$. Line $NI_A$ meets $\Omega$ a second time at $T$. The perpendicular to $AI$ at $I$ meets sides $AC$ and $AB$ at $E$ and $F$ respectively. The circumcircle of $\triangle BFT$ meets $BI_A$ a second time at $P$, and the circumcircle of $\triangle CET$ meets $CI_A$ a second time at $Q$. Prove that $PQ$ passes through the antipodal to $A$ on $\Omega$.

2010 Korea - Final Round, 2

Let $ I$ be the incentre and $ O$ the circumcentre of a given acute triangle $ ABC$. The incircle is tangent to $ BC$ at $ D$. Assume that $ \angle B < \angle C$ and the segments $ AO$ and $ HD$ are parallel, where $H$ is the orthocentre of triangle $ABC$. Let the intersection of the line $ OD$ and $ AH$ be $ E$. If the midpoint of $ CI$ is $ F$, prove that $ E,F,I,O$ are concyclic.

2012 Online Math Open Problems, 24

In scalene $\triangle ABC$, $I$ is the incenter, $I_a$ is the $A$-excenter, $D$ is the midpoint of arc $BC$ of the circumcircle of $ABC$ not containing $A$, and $M$ is the midpoint of side $BC$. Extend ray $IM$ past $M$ to point $P$ such that $IM = MP$. Let $Q$ be the intersection of $DP$ and $MI_a$, and $R$ be the point on the line $MI_a$ such that $AR\parallel DP$. Given that $\frac{AI_a}{AI}=9$, the ratio $\frac{QM} {RI_a}$ can be expressed in the form $\frac{m}{n}$ for two relatively prime positive integers $m,n$. Compute $m+n$. [i]Ray Li.[/i] [hide="Clarifications"][list=1][*]"Arc $BC$ of the circumcircle" means "the arc with endpoints $B$ and $C$ not containing $A$".[/list][/hide]

2006 Sharygin Geometry Olympiad, 15

A circle is circumscribed around triangle $ABC$ and a circle is inscribed in it, which touches the sides of the triangle $BC,CA,AB$ at points $A_1,B_1,C_1$, respectively. The line $B_1C_1$ intersects the line $BC$ at the point $P$, and $M$ is the midpoint of the segment $PA_1$. Prove that the segments of the tangents drawn from the point $M$ to the inscribed and circumscribed circle are equal.

2000 Hong kong National Olympiad, 1

Let $O$ be the circumcentre of a triangle $ABC$ with $AB > AC > BC$. Let $D$ be a point on the minor arc $BC$ of the circumcircle and let $E$ and $F$ be points on $AD$ such that $AB \perp OE$ and $AC \perp OF$ . The lines $BE$ and $CF$ meet at $P$. Prove that if $PB=PC+PO$, then $\angle BAC = 30^{\circ}$.

2014 Brazil Team Selection Test, 3

Let $ABC$ be a triangle with $\angle B > \angle C$. Let $P$ and $Q$ be two different points on line $AC$ such that $\angle PBA = \angle QBA = \angle ACB $ and $A$ is located between $P$ and $C$. Suppose that there exists an interior point $D$ of segment $BQ$ for which $PD=PB$. Let the ray $AD$ intersect the circle $ABC$ at $R \neq A$. Prove that $QB = QR$.

2014 Estonia Team Selection Test, 4

In an acute triangle the feet of altitudes drawn from vertices $A$ and $B$ are $D$ and $E$, respectively. Let $M$ be the midpoint of side $AB$. Line $CM$ intersects the circumcircle of $CDE$ again in point $P$ and the circumcircle of $CAB$ again in point $Q$. Prove that $|MP| = |MQ|$.

2008 Balkan MO Shortlist, G2

Given a scalene acute triangle $ ABC$ with $ AC>BC$ let $ F$ be the foot of the altitude from $ C$. Let $ P$ be a point on $ AB$, different from $ A$ so that $ AF\equal{}PF$. Let $ H,O,M$ be the orthocenter, circumcenter and midpoint of $ [AC]$. Let $ X$ be the intersection point of $ BC$ and $ HP$. Let $ Y$ be the intersection point of $ OM$ and $ FX$ and let $ OF$ intersect $ AC$ at $ Z$. Prove that $ F,M,Y,Z$ are concyclic.

2018 Ukraine Team Selection Test, 9

Let $AA_1, BB_1, CC_1$ be the heights of triangle $ABC$ and $H$ be its orthocenter. Liune $\ell$ parallel to $AC$, intersects straight lines $AA_1$ and $CC_1$ at points $A_2$ and $C_2$, respectively. Suppose that point $B_1$ lies outside the circumscribed circle of triangle $A_2 HC_2$. Let $B_1P$ and $B_1T$ be tangent to of this circle. Prove that points $A_1, C_1, P$, and $T$ are cyclic.

1996 Czech And Slovak Olympiad IIIA, 6

Let $K,L,M$ be points on sides $AB,BC,CA$, respectively, of a triangle $ABC$ such that $AK/AB = BL/BC = CM/CA = 1/3$. Show that if the circumcircles of the triangles $AKM, BLK, CML$ are equal, then so are the incircles of these triangles.

2008 Mexico National Olympiad, 3

The internal angle bisectors of $A$, $B$, and $C$ in $\triangle ABC$ concur at $I$ and intersect the circumcircle of $\triangle ABC$ at $L$, $M$, and $N$, respectively. The circle with diameter $IL$ intersects $BC$ at $D$ and $E$; the circle with diameter $IM$ intersects $CA$ at $F$ and $G$; the circle with diameter $IN$ intersects $AB$ at $H$ and $J$. Show that $D$, $E$, $F$, $G$, $H$, and $J$ are concyclic.

1966 IMO Shortlist, 39

Consider a circle with center $O$ and radius $R,$ and let $A$ and $B$ be two points in the plane of this circle. [b]a.)[/b] Draw a chord $CD$ of the circle such that $CD$ is parallel to $AB,$ and the point of the intersection $P$ of the lines $AC$ and $BD$ lies on the circle. [b]b.)[/b] Show that generally, one gets two possible points $P$ ($P_{1}$ and $P_{2}$) satisfying the condition of the above problem, and compute the distance between these two points, if the lengths $OA=a,$ $OB=b$ and $AB=d$ are given.

1980 IMO Longlists, 4

Determine all positive integers $n$ such that the following statement holds: If a convex polygon with with $2n$ sides $A_1 A_2 \ldots A_{2n}$ is inscribed in a circle and $n-1$ of its $n$ pairs of opposite sides are parallel, which means if the pairs of opposite sides \[(A_1 A_2, A_{n+1} A_{n+2}), (A_2 A_3, A_{n+2} A_{n+3}), \ldots , (A_{n-1} A_n, A_{2n-1} A_{2n})\] are parallel, then the sides \[ A_n A_{n+1}, A_{2n} A_1\] are parallel as well.