This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3882

1995 Turkey MO (2nd round), 2

Let $ABC$ be an acute triangle and let $k_{1},k_{2},k_{3}$ be the circles with diameters $BC,CA,AB$, respectively. Let $K$ be the radical center of these circles. Segments $AK,CK,BK$ meet $k_{1},k_{2},k_{3}$ again at $D,E,F$, respectively. If the areas of triangles $ABC,DBC,ECA,FAB$ are $u,x,y,z$, respectively, prove that \[u^{2}=x^{2}+y^{2}+z^{2}.\]

2024 Oral Moscow Geometry Olympiad, 5

An acute-angled unequal triangle $ABC$ is drawn with its circumcircle and circumcenter $O$. The incenter $I$ is also marked. Using only a ruler (without divisions), construct the symedian (a line symmetrical to the median relative to the corresponding bisector) of the triangle, drawing no more than four lines.

2015 Switzerland - Final Round, 1

Let $ABC$ be an acute-angled triangle with $AB \ne BC$ and radius $k$. Let $P$ and $Q$ be the points of intersection of $k$ with the internal bisector and the external bisector of $\angle CBA$ respectively. Let $D$ be the intersection of $AC$ and $PQ$. Find the ratio $AD: DC$.

2015 Middle European Mathematical Olympiad, 3

Let $ABCD$ be a cyclic quadrilateral. Let $E$ be the intersection of lines parallel to $AC$ and $BD$ passing through points $B$ and $A$, respectively. The lines $EC$ and $ED$ intersect the circumcircle of $AEB$ again at $F$ and $G$, respectively. Prove that points $C$, $D$, $F$, and $G$ lie on a circle.

2022 Dutch IMO TST, 1

Consider an acute triangle $ABC$ with $|AB| > |CA| > |BC|$. The vertices $D, E$, and $F$ are the base points of the altitudes from $A, B$, and $C$, respectively. The line through F parallel to $DE$ intersects $BC$ in $M$. The angular bisector of $\angle MF E$ intersects $DE$ in $N$. Prove that $F$ is the circumcentre of $\vartriangle DMN$ if and only if $B$ is the circumcentre of $\vartriangle FMN$.

2004 Romania Team Selection Test, 4

Let $D$ be a closed disc in the complex plane. Prove that for all positive integers $n$, and for all complex numbers $z_1,z_2,\ldots,z_n\in D$ there exists a $z\in D$ such that $z^n = z_1\cdot z_2\cdots z_n$.

2013 Saudi Arabia GMO TST, 1

An acute triangle $ABC$ is inscribed in circle $\omega$ centered at $O$. Line $BO$ and side $AC$ meet at $B_1$. Line $CO$ and side $AB$ meet at $C_1$. Line $B_1C_1$ meets circle $\omega$ at $P$ and $Q$. If $AP = AQ$, prove that $AB = AC$.

2018-IMOC, G4

Given an acute $\vartriangle ABC$ with incenter $I$. Let $I'$ be the symmetric point $I$ with respect to the midpoint of $B,C$ and $D$ is the foot of $A$. If $DI$ and the circumcircle of vartriangle $BI'C$ intersect at $T$ and $TI' $ intersects the circumcircle of $\vartriangle ATI$ at $X$. Furthermore, $E,F$ are tangent points of the incircle and $AB,AC, P$ is the another intersection of the circumcircles of $\vartriangle ABC, \vartriangle AEF$. Show that $AX \parallel PI$. [img]https://3.bp.blogspot.com/-tj9A8HIR6Vw/XndLEPMRvnI/AAAAAAAALfk/2vw_pZbhpnkTKIc1BcKf4K7SNZ11vu4TACK4BGAYYCw/s1600/2018%2Bimoc%2Bg4.png[/img]

2024 All-Russian Olympiad Regional Round, 11.8

3 segments $AA_1$, $BB_1$, $CC_1$ in space share a common midpoint $M$. Turns out, the sphere circumscribed about the tetrahedron $MA_1B_1C_1$ is tangent to plane $ABC$ at point $D$. Point $O$ is the circumcenter of triangle $ABC$. Prove that $MO = MD$.

2016 Silk Road, 2

Around the acute-angled triangle $ABC$ ($AC>CB$) a circle is circumscribed, and the point $N$ is midpoint of the arc $ACB$ of this circle. Let the points $A_1$ and $B_1$ be the feet of perpendiculars on the straight line $NC$, drawn from points $A$ and $B$ respectively (segment $NC$ lies inside the segment $A_1B_1$). Altitude $A_1A_2$ of triangle $A_1AC$ and altitude $B_1B_2$ of triangle $B_1BC$ intersect at a point $K$ . Prove that $\angle A_1KN=\angle B_1KM$, where $M$ is midpoint of the segment $A_2B_2$ .

2004 All-Russian Olympiad, 2

Let $ I(A)$ and $ I(B)$ be the centers of the excircles of a triangle $ ABC,$ which touches the sides $ BC$ and $ CA$ in its interior. Furthermore let $ P$ a point on the circumcircle $ \omega$ of the triangle $ ABC.$ Show that the center of the segment which connects the circumcenters of the triangles $ I(A)CP$ and $ I(B)CP$ coincides with the center of the circle $ \omega.$

Cono Sur Shortlist - geometry, 2020.G2

Let $ABC$ be a triangle whose inscribed circle is $\omega$. Let $r_1$ be the line parallel to $BC$ and tangent to $\omega$, with $r_1 \ne BC$ and let $r_2$ be the line parallel to $AB$ and tangent to $\omega$ with $r_2 \ne AB$. Suppose that the intersection point of $r_1$ and $r_2$ lies on the circumscribed circle of triangle $ABC$. Prove that the sidelengths of triangle $ABC$ form an arithmetic progression.

2021 Taiwan TST Round 1, G

Let $ABC$ be a triangle with incenter $I$ and circumcircle $\Omega$. A point $X$ on $\Omega$ which is different from $A$ satisfies $AI=XI$. The incircle touches $AC$ and $AB$ at $E, F$, respectively. Let $M_a, M_b, M_c$ be the midpoints of sides $BC, CA, AB$, respectively. Let $T$ be the intersection of the lines $M_bF$ and $M_cE$. Suppose that $AT$ intersects $\Omega$ again at a point $S$. Prove that $X, M_a, S, T$ are concyclic. [i]Proposed by ltf0501 and Li4[/i]

2008 Switzerland - Final Round, 1

Let $ABC$ be a triangle with $\angle BAC \ne 45^o$ and $\angle ABC \ne 135^o$. Let $P$ be the point on the line $AB$ with $\angle CPB = 45^o$. Let $O_1$ and $O_2$ be the centers of the circumcircles of the triangles $ACP$ and $BCP$ respectively. Show that the area of the square $CO_1P O_2$ is equal to the area of the triangle $ABC$.

2011 Belarus Team Selection Test, 3

Let $ABC$ be an acute triangle with $D, E, F$ the feet of the altitudes lying on $BC, CA, AB$ respectively. One of the intersection points of the line $EF$ and the circumcircle is $P.$ The lines $BP$ and $DF$ meet at point $Q.$ Prove that $AP = AQ.$ [i]Proposed by Christopher Bradley, United Kingdom[/i]

2010 China Team Selection Test, 1

Given acute triangle $ABC$ with $AB>AC$, let $M$ be the midpoint of $BC$. $P$ is a point in triangle $AMC$ such that $\angle MAB=\angle PAC$. Let $O,O_1,O_2$ be the circumcenters of $\triangle ABC,\triangle ABP,\triangle ACP$ respectively. Prove that line $AO$ passes through the midpoint of $O_1 O_2$.

2023 JBMO Shortlist, G3

Let $A,B,C,D$ and $E$ be five points lying in this order on a circle, such that $AD=BC$. The lines $AD$ and $BC$ meet at a point $F$. The circumcircles of the triangles $CEF$ and $ABF$ meet again at the point $P$. Prove that the circumcircles of triangles $BDF$ and $BEP$ are tangent to each other.

2019 Mexico National Olympiad, 6

Let $ABC$ be a triangle such that $\angle BAC = 45^{\circ}$. Let $H,O$ be the orthocenter and circumcenter of $ABC$, respectively. Let $\omega$ be the circumcircle of $ABC$ and $P$ the point on $\omega$ such that the circumcircle of $PBH$ is tangent to $BC$. Let $X$ and $Y$ be the circumcenters of $PHB$ and $PHC$ respectively. Let $O_1,O_2$ be the circumcenters of $PXO$ and $PYO$ respectively. Prove that $O_1$ and $O_2$ lie on $AB$ and $AC$, respectively.

2009 Greece National Olympiad, 2

Consider a triangle $ABC$ with circumcenter $O$ and let $A_1,B_1,C_1$ be the midpoints of the sides $BC,AC,AB,$ respectively. Points $A_2,B_2,C_2$ are defined as $\overrightarrow{OA_2}=\lambda \cdot \overrightarrow{OA_1}, \ \overrightarrow{OB_2}=\lambda \cdot \overrightarrow{OB_1}, \ \overrightarrow{OC_2}=\lambda \cdot \overrightarrow{OC_1},$ where $\lambda >0.$ Prove that lines $AA_2,BB_2,CC_2$ are concurrent.

1991 Romania Team Selection Test, 5

In a triangle $A_1A_2A_3$, the excribed circles corresponding to sides $A_2A_3$, $A_3A_1$, $A_1A_2$ touch these sides at $T_1$, $T_2$, $T_3$, respectively. If $H_1$, $H_2$, $H_3$ are the orthocenters of triangles $A_1T_2T_3$, $A_2T_3T_1$, $A_3T_1T_2$, respectively, prove that lines $H_1T_1$, $H_2T_2$, $H_3T_3$ are concurrent.

2021 Sharygin Geometry Olympiad, 18

Let $ABC$ be a scalene triangle, $AM$ be the median through $A$, and $\omega$ be the incircle. Let $\omega$ touch $BC$ at point $T$ and segment $AT$ meet $\omega$ for the second time at point $S$. Let $\delta$ be the triangle formed by lines $AM$ and $BC$ and the tangent to $\omega$ at $S$. Prove that the incircle of triangle $\delta$ is tangent to the circumcircle of triangle $ABC$.

2016 Federal Competition For Advanced Students, P1, 2

We are given an acute triangle $ABC$ with $AB > AC$ and orthocenter $H$. The point $E$ lies symmetric to $C$ with respect to the altitude $AH$. Let $F$ be the intersection of the lines $EH$ and $AC$. Prove that the circumcenter of the triangle $AEF$ lies on the line $AB$. (Karl Czakler)

1989 Brazil National Olympiad, 5

A tetrahedron is such that the center of the its circumscribed sphere is inside the tetrahedron. Show that at least one of its edges has a size larger than or equal to the size of the edge of a regular tetrahedron inscribed in this same sphere.

2018 India Regional Mathematical Olympiad, 5

In a cyclic quadrilateral $ABCD$ with circumcenter $O$, the diagonals $AC$ and $BD$ intersect at $X$. Let the circumcircles of triangles $AXD$ and $BXC$ intersect at $Y$. Let the circumcircles of triangles $AXB$ and $CXD$ intersect at $Z$. If $O$ lies inside $ABCD$ and if the points $O,X,Y,Z$ are all distinct, prove that $O,X,Y,Z$ lie on a circle.

2012 Online Math Open Problems, 50

In tetrahedron $SABC$, the circumcircles of faces $SAB$, $SBC$, and $SCA$ each have radius $108$. The inscribed sphere of $SABC$, centered at $I$, has radius $35.$ Additionally, $SI = 125$. Let $R$ be the largest possible value of the circumradius of face $ABC$. Given that $R$ can be expressed in the form $\sqrt{\frac{m}{n}}$, where $m$ and $n$ are relatively prime positive integers, find $m+n$. [i]Author: Alex Zhu[/i]