This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3882

2023 JBMO Shortlist, G5

Let $D,E,F$ be the points of tangency of the incircle of a given triangle $ABC$ with sides $BC, CA, AB,$ respectively. Denote by $I$ the incenter of $ABC$, by $M$ the midpoint of $BC$ and by $G$ the foot of the perpendicular from $M$ to line $EF$. Prove that the line $ID$ is tangent to the circumcircle of the triangle $MGI$.

Geometry Mathley 2011-12, 4.3

Let $ABC$ be a triangle not being isosceles at $A$. Let $(O)$ and $(I)$ denote the circumcircle and incircle of the triangle. $(I)$ touches $AC$ and $AB$ at $E, F$ respectively. Points $M$ and $N$ are on the circle $(I)$ such that $EM \parallel FN \parallel BC$. Let $P,Q$ be the intersections of $BM,CN$ and $(I)$. Prove that i) $BC,EP, FQ$ are concurrent, and denote by $K$ the point of concurrency. ii) the circumcircles of triangle $BPK, CQK$ are all tangent to $(I)$ and all pass through a common point on the circle $(O)$. Nguyễn Minh Hà

2007 China Team Selection Test, 1

Let convex quadrilateral $ ABCD$ be inscribed in a circle centers at $ O.$ The opposite sides $ BA,CD$ meet at $ H$, the diagonals $ AC,BD$ meet at $ G.$ Let $ O_{1},O_{2}$ be the circumcenters of triangles $ AGD,BGC.$ $ O_{1}O_{2}$ intersects $ OG$ at $ N.$ The line $ HG$ cuts the circumcircles of triangles $ AGD,BGC$ at $ P,Q$, respectively. Denote by $ M$ the midpoint of $ PQ.$ Prove that $ NO \equal{} NM.$

2015 Saint Petersburg Mathematical Olympiad, 4

$ABCD$ is convex quadrilateral. Circumcircle of $ABC$ intersect $AD$ and $DC$ at points $P$ and $Q$. Circumcircle of $ADC$ intersect $AB$ and $BC$ at points $S$ and $R$. Prove that if $PQRS$ is parallelogram then $ABCD$ is parallelogram

2015 AIME Problems, 11

The circumcircle of acute $\triangle ABC$ has center $O$. The line passing through point $O$ perpendicular to $\overline{OB}$ intersects lines $AB$ and $BC$ at $P$ and $Q$, respectively. Also $AB=5$, $BC=4$, $BQ=4.5$, and $BP=\frac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find $m+n$.

2015 India IMO Training Camp, 1

Let $ABC$ be a triangle in which $CA>BC>AB$. Let $H$ be its orthocentre and $O$ its circumcentre. Let $D$ and $E$ be respectively the midpoints of the arc $AB$ not containing $C$ and arc $AC$ not containing $B$. Let $D'$ and $E'$ be respectively the reflections of $D$ in $AB$ and $E$ in $AC$. Prove that $O, H, D', E'$ lie on a circle if and only if $A, D', E'$ are collinear.

Novosibirsk Oral Geo Oly IX, 2022.4

A point $D$ is marked on the side $AC$ of triangle $ABC$. The circumscribed circle of triangle $ABD$ passes through the center of the inscribed circle of triangle $BCD$. Find $\angle ACB$ if $\angle ABC = 40^o$.

2017 Korea Junior Math Olympiad, 6

Let triangle $ABC$ be an acute scalene triangle, and denote $D,E,F$ by the midpoints of $BC,CA,AB$, respectively. Let the circumcircle of $DEF$ be $O_1$, and its center be $N$. Let the circumcircle of $BCN$ be $O_2$. $O_1$ and $O_2$ meet at two points $P, Q$. $O_2$ meets $AB$ at point $K(\neq B)$ and meets $AC$ at point $L(\neq C)$. Show that the three lines $EF,PQ,KL$ are concurrent.

2007 Portugal MO, 2

Let $[ABC]$ be a triangle and $X, Y$ and $Z$ points on the sides $[AB], [BC]$ and $[AC]$, respectively. Prove that circumcircles of triangles $AXZ, BXY$ and $CYZ$ intersect at a point.

1998 IMO Shortlist, 4

Let $ M$ and $ N$ be two points inside triangle $ ABC$ such that \[ \angle MAB \equal{} \angle NAC\quad \mbox{and}\quad \angle MBA \equal{} \angle NBC. \] Prove that \[ \frac {AM \cdot AN}{AB \cdot AC} \plus{} \frac {BM \cdot BN}{BA \cdot BC} \plus{} \frac {CM \cdot CN}{CA \cdot CB} \equal{} 1. \]

2008 Philippine MO, 3

Let $P$ be a point outside a circle $\Gamma$, and let the two tangent lines through $P$ touch $\Gamma$ at $A$ and $B$. Let $C$ be on the minor arc $AB$, and let ray $PC$ intersect $\Gamma$ again at $D$. Let $\ell$ be the line through $B$ and parallel to $PA$. $\ell$ intersects $AC$ and $AD$ at $E$ and $F$, respectively. Prove that $B$ is the midpoint of $EF$.

2014 NIMO Problems, 7

Let $\triangle ABC$ have $AB=6$, $BC=7$, and $CA=8$, and denote by $\omega$ its circumcircle. Let $N$ be a point on $\omega$ such that $AN$ is a diameter of $\omega$. Furthermore, let the tangent to $\omega$ at $A$ intersect $BC$ at $T$, and let the second intersection point of $NT$ with $\omega$ be $X$. The length of $\overline{AX}$ can be written in the form $\tfrac m{\sqrt n}$ for positive integers $m$ and $n$, where $n$ is not divisible by the square of any prime. Find $100m+n$. [i]Proposed by David Altizio[/i]

2005 Estonia Team Selection Test, 6

Let $\Gamma$ be a circle and let $d$ be a line such that $\Gamma$ and $d$ have no common points. Further, let $AB$ be a diameter of the circle $\Gamma$; assume that this diameter $AB$ is perpendicular to the line $d$, and the point $B$ is nearer to the line $d$ than the point $A$. Let $C$ be an arbitrary point on the circle $\Gamma$, different from the points $A$ and $B$. Let $D$ be the point of intersection of the lines $AC$ and $d$. One of the two tangents from the point $D$ to the circle $\Gamma$ touches this circle $\Gamma$ at a point $E$; hereby, we assume that the points $B$ and $E$ lie in the same halfplane with respect to the line $AC$. Denote by $F$ the point of intersection of the lines $BE$ and $d$. Let the line $AF$ intersect the circle $\Gamma$ at a point $G$, different from $A$. Prove that the reflection of the point $G$ in the line $AB$ lies on the line $CF$.

2023 Junior Balkan Mathematical Olympiad, 4

Let $ABC$ be an acute triangle with circumcenter $O$. Let $D$ be the foot of the altitude from $A$ to $BC$ and let $M$ be the midpoint of $OD$. The points $O_b$ and $O_c$ are the circumcenters of triangles $AOC$ and $AOB$, respectively. If $AO=AD$, prove that points $A$, $O_b$, $M$ and $O_c$ are concyclic. [i]Marin Hristov and Bozhidar Dimitrov, Bulgaria[/i]

1974 IMO Longlists, 41

Through the circumcenter $O$ of an arbitrary acute-angled triangle, chords $A_1A_2,B_1B_2, C_1C_2$ are drawn parallel to the sides $BC,CA,AB$ of the triangle respectively. If $R$ is the radius of the circumcircle, prove that \[A_1O \cdot OA_2 + B_1O \cdot OB_2 + C_1O \cdot OC_2 = R^2.\]

2003 IberoAmerican, 2

Let $C$ and $D$ be two points on the semicricle with diameter $AB$ such that $B$ and $C$ are on distinct sides of the line $AD$. Denote by $M$, $N$ and $P$ the midpoints of $AC$, $BD$ and $CD$ respectively. Let $O_A$ and $O_B$ the circumcentres of the triangles $ACP$ and $BDP$. Show that the lines $O_AO_B$ and $MN$ are parallel.

2018 Sharygin Geometry Olympiad, 6

Let $\omega$ be the circumcircle of $ABC$, and $KL$ be the diameter of $\omega$ passing through $M$ midpoint of $AB$ ($K,C$ lies on different sides of $AB$). A circle passing through $L$ and $M$ meets $CK$ at points $P$ and $Q$ ($Q$ lies on $KP$). Let $LQ$ meet the circumcircle of $KMQ$ again at $R$. Prove that $APBR$ is cyclic.

2018 Taiwan TST Round 3, 2

Let $I,G,O$ be the incenter, centroid and the circumcenter of triangle $ABC$, respectively. Let $X,Y,Z$ be on the rays $BC, CA, AB$ respectively so that $BX=CY=AZ$. Let $F$ be the centroid of $XYZ$. Show that $FG$ is perpendicular to $IO$.

2005 Croatia National Olympiad, 2

Let $U$ be the incenter of a triangle $ABC$ and $O_{1}, O_{2}, O_{3}$ be the circumcenters of the triangles $BCU, CAU, ABU$ , respectively. Prove that the circumcircles of the triangles $ABC$ and $O_{1}O_{2}O_{3}$ have the same center.

1961 Putnam, B3

Consider four points in the plane, no three of which are collinear, and such that the circle through three of them does not pass through the fourth. Prove that one of the four points can be selected having the property that it lies inside the circle determined by the other three.

2010 Postal Coaching, 5

A point $P$ lies on the internal angle bisector of $\angle BAC$ of a triangle $\triangle ABC$. Point $D$ is the midpoint of $BC$ and $PD$ meets the external angle bisector of $\angle BAC$ at point $E$. If $F$ is the point such that $PAEF$ is a rectangle then prove that $PF$ bisects $\angle BFC$ internally or externally.

2001 Turkey Team Selection Test, 2

Let $H$ be the intersection of the altitudes of an acute triangle $ABC$ and $D$ be the midpoint of $[AC]$. Show that $DH$ passes through one of the intersection point of the circumcircle of $ABC$ and the circle with diameter $[BH]$.

2020 Silk Road, 2

The triangle $ ABC $ is inscribed in the circle $ \omega $. Points $ K, L, M $ are marked on the sides $ AB, BC, CA $, respectively, and $ CM \cdot CL = AM \cdot BL $. Ray $ LK $ intersects line $ AC $ at point $ P $. The common chord of the circle $ \omega $ and the circumscribed circle of the triangle $ KMP $ meets the segment $ AM $ at the point $ S $. Prove that $ SK \parallel BC $.

2010 USA Team Selection Test, 7

In triangle ABC, let $P$ and $Q$ be two interior points such that $\angle ABP = \angle QBC$ and $\angle ACP = \angle QCB$. Point $D$ lies on segment $BC$. Prove that $\angle APB + \angle DPC = 180^\circ$ if and only if $\angle AQC + \angle DQB = 180^\circ$.

1969 IMO Longlists, 5

$(BEL 5)$ Let $G$ be the centroid of the triangle $OAB.$ $(a)$ Prove that all conics passing through the points $O,A,B,G$ are hyperbolas. $(b)$ Find the locus of the centers of these hyperbolas.