This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 254

2007 Korea Junior Math Olympiad, 4

Let $P$ be a point inside $\triangle ABC$. Let the perpendicular bisectors of $PA,PB,PC$ be $\ell_1,\ell_2,\ell_3$. Let $D =\ell_1 \cap \ell_2$ , $E=\ell_2 \cap \ell_3$, $F=\ell_3 \cap \ell_1$. If $A,B,C,D,E,F$ lie on a circle, prove that $C, P,D$ are collinear.

2005 Oral Moscow Geometry Olympiad, 2

On a circle with diameter $AB$, lie points $C$ and $D$. $XY$ is the diameter passing through the midpoint $K$ of the chord $CD$. Point $M$ is the projection of point $X$ onto line $AC$, and point $N$ is the projection of point $Y$ on line $BD$. Prove that points $M, N$ and $K$ are collinear. (A. Zaslavsky)

2011 Korea Junior Math Olympiad, 2

Let $ABCD$ be a cyclic quadrilateral inscirbed in circle $O$. Let the tangent to $O$ at $A$ meet $BC$ at $S$, and the tangent to $O$ at $B$ meet $CD$ at $T$. Circle with $S$ as its center and passing $A$ meets $BC$ at $E$, and $AE$ meets $O$ again at $F(\ne A)$. The circle with $T$ as its center and passing $B$ meets $CD$ at $K$. Let $P = BK \cap AC$. Prove that $P,F,D$ are collinear if and only if $AB = AP$.

2019 New Zealand MO, 7

Let $ABCDEF$ be a convex hexagon containing a point $P$ in its interior such that $PABC$ and $PDEF$ are congruent rectangles with $PA = BC = P D = EF$ (and $AB = PC = DE = PF$). Let $\ell$ be the line through the midpoint of $AF$ and the circumcentre of $PCD$. Prove that $\ell$ passes through $P$.

2016 Dutch BxMO TST, 3

Let $\vartriangle ABC$ be a right-angled triangle with $\angle A = 90^o$ and circumcircle $\Gamma$. The inscribed circle is tangent to $BC$ in point $D$. Let $E$ be the midpoint of the arc $AB$ of $\Gamma$ not containing $C$ and let $F$ be the midpoint of the arc $AC$ of $\Gamma$ not containing $B$. (a) Prove that $\vartriangle ABC \sim \vartriangle DEF$. (b) Prove that $EF$ goes through the points of tangency of the incircle to $AB$ and $AC$.

2021 Federal Competition For Advanced Students, P2, 5

Let $ABCD$ be a convex cyclic quadrilateral with diagonals $AC$ and $BD$. Each of the four vertixes are reflected across the diagonal on which the do not lie. (a) Investigate when the four points thus obtained lie on a straight line and give as simple an equivalent condition as possible to the cyclic quadrilateral $ABCD$ for it. (b) Show that in all other cases the four points thus obtained lie on one circle. (Theresia Eisenkölbl)

2016 Saudi Arabia GMO TST, 3

Let $ABC$ be an acute, non-isosceles triangle with the circumcircle $(O)$. Denote $D, E$ as the midpoints of $AB,AC$ respectively. Two circles $(ABE)$ and $(ACD)$ intersect at $K$ differs from $A$. Suppose that the ray $AK$ intersects $(O)$ at $L$. The line $LB$ meets $(ABE)$ at the second point $M$ and the line $LC$ meets $(ACD)$ at the second point $N$. a) Prove that $M, K, N$ collinear and $MN$ perpendicular to $OL$. b) Prove that $K$ is the midpoint of $MN$

Kharkiv City MO Seniors - geometry, 2018.11.4

The line $\ell$ parallel to the side $BC$ of the triangle $ABC$, intersects its sides $AB,AC$ at the points $D,E$, respectively. The circumscribed circle of triangle $ABC$ intersects line $\ell$ at points $F$ and $G$, such that points $F,D,E,G$ lie on line $\ell$ in this order. The circumscribed circles of the triangles $FEB$ and $DGC$ intersect at points $P$ and $Q$. Prove that points $A, P$ and $Q$ are collinear.

2004 Chile National Olympiad, 6

The $ AB, BC $ and $ CD $ segments of the polygon $ ABCD $ have the same length and are tangent to a circle $ S $, centered on the point $ O $. Let $ P $ be the point of tangency of $ BC $ with $ S $, and let $ Q $ be the intersection point of lines $ AC $ and $ BD $. Show that the point $ Q $ is collinear with the points $ P $ and $ O $.

1998 Singapore MO Open, 2

Let $N$ be the set of natural numbers, and let $f: N \to N$ be a function satisfying $f(x) + f(x + 2) < 2 f(x + 1)$ for any $x \in N$. Prove that there exists a straight line in the $xy$-plane which contains infinitely many points with coordinates $(n,f(n))$.

2014 Costa Rica - Final Round, 1

Consider the following figure where $AC$ is tangent to the circle of center $O$, $\angle BCD = 35^o$, $\angle BAD = 40^o$ and the measure of the minor arc $DE$ is $70^o$. Prove that points $B, O, E$ are collinear. [img]https://cdn.artofproblemsolving.com/attachments/4/0/fd5f8d3534d9d0676deebd696d174999c2ad75.png[/img]

2017 Romania Team Selection Test, P4

Let $ABCD$ be a convex quadrilateral and let $P$ and $Q$ be variable points inside this quadrilateral so that $\angle APB=\angle CPD=\angle AQB=\angle CQD$. Prove that the lines $PQ$ obtained in this way all pass through a fixed point , or they are all parallel.

1998 Abels Math Contest (Norwegian MO), 4

Let $A,B,P$ be points on a line $\ell$, with $P$ outside the segment $AB$. Lines $a$ and $b$ pass through $A$ and $B$ and are perpendicular to $\ell$. A line $m$ through $P$, which is neither parallel nor perpendicular to $\ell$, intersects $a$ and $b$ at $Q$ and $R$, respectively. The perpendicular from $B$ to $AR$ meets $a$ and $AR$ at $S$ and $U$, and the perpendicular from $A$ to $BQ$ meets $b$ and $BQ$ at $T$ and $V$, respectively. (a) Prove that $P,S,T$ are collinear. (b) Prove that $P,U,V$ are collinear.

1971 IMO Longlists, 39

Two congruent equilateral triangles $ABC$ and $A'B'C'$ in the plane are given. Show that the midpoints of the segments $AA',BB', CC'$ either are collinear or form an equilateral triangle.

2015 Indonesia MO Shortlist, G5

Let $ABC$ be an acute triangle. Suppose that circle $\Gamma_1$ has it's center on the side $AC$ and is tangent to the sides $AB$ and $BC$, and circle $\Gamma_2$ has it's center on the side $AB$ and is tangent to the sides $AC$ and $BC$. The circles $\Gamma_1$ and $ \Gamma_2$ intersect at two points $P$ and $Q$. Show that if $A, P, Q$ are collinear, then $AB = AC$.

2014 Belarus Team Selection Test, 1

Circles $\Gamma_1$ and $\Gamma_2$ meet at points $X$ and $Y$. A circle $S_1$ touches internally $\Gamma_1$ at $A$ and $\Gamma_2$ externally at $B$. A circle $S_2$ touches $\Gamma_2$ internally at $C$ and $\Gamma_1$ externally at $D$. Prove that the points $A, B, C, D$ are either collinear or concyclic. (A. Voidelevich)

Geometry Mathley 2011-12, 1.3

Let $ABC$ be an acute triangle with incenter $O$, orthocenter $H$, altitude $AD. AO$ meets $BC$ at $E$. Line through $D$ parallel to $OH$ meet $AB,AC$ at $M,N$, respectively. Let $I$ be the midpoint of $AE$, and $DI$ intersect $AB,AC$ at $P,Q$ respectively. $MQ$ meets $NP$ at $T$. Prove that $D,O, T$ are collinear. Trần Quang Hùng

1959 Poland - Second Round, 6

From a point $ M $ on the surface of a sphere, three mutually perpendicular chords $ MA $, $ MB $, $ MC $ are drawn. Prove that the segment joining the point $ M $ with the center of the sphere intersects the plane of the triangle $ ABC $ at the center of gravity of this triangle.

2017 Czech-Polish-Slovak Match, 1

Let ${ABC}$ be a triangle. Line [i]l[/i] is parallel to ${BC}$ and it respectively intersects side ${AB}$ at point ${D}$, side ${AC}$ at point ${E}$, and the circumcircle of the triangle ${ABC}$ at points ${F}$ and ${G}$, where points ${F,D,E,G}$ lie in this order on [i]l[/i]. The circumcircles of triangles ${FEB}$ and ${DGC}$ intersect at points ${P}$ and ${Q}$. Prove that points ${A, P,Q}$ are collinear. (Slovakia)

2008 Korea Junior Math Olympiad, 1

In a $\triangle XYZ$, points $A,B$ lie on segment $ZX, C,D$ lie on segment $XY , E, F$ lie on segment $YZ$. $A, B, C, D$ lie on a circle, and $\frac{AZ \cdot EY \cdot ZB \cdot Y F}{EZ \cdot CY \cdot ZF \cdot Y D}= 1$ . Let $L = ZX \cap DE$, $M = XY \cap AF$, $N = Y Z \cap BC$. Prove that $L,M,N$ are collinear.

Geometry Mathley 2011-12, 9.1

Let $ABC$ be a triangle with $(O), (I)$ being the circumcircle, and incircle respectively. Let $(I)$ touch $BC,CA$, and $AB$ at $A_0, B_0, C_0$ let $BC,CA$, and $AB$ intersect $B_0C_0, C_0A_0, A_0Bv$ at $A_1, B_1$, and $C_1$ respectively. Prove that $OI$ passes through the orthocenter of four triangles $A_0B_0C_0, A_0B_1C_1, B_0C_1A_1,C_0A_1B_1$. Nguyễn Minh Hà

2015 Sharygin Geometry Olympiad, P18

Let $ABCDEF$ be a cyclic hexagon, points $K, L, M, N$ be the common points of lines $AB$ and $CD$, $AC$ and $BD$, $AF$ and $DE$, $AE$ and $DF$ respectively. Prove that if three of these points are collinear then the fourth point lies on the same line.

2018 District Olympiad, 3

Let $ABCDA'B'C'D'$ be the rectangular parallelepiped. Let $M, N, P$ be midpoints of the edges $[AB], [BC],[BB']$ respectively . Let $\{O\} = A'N \cap C'M$. a) Prove that the points $D, O, P$ are collinear. b) Prove that $MC' \perp (A'PN)$ if and only if $ABCDA'B'C'D'$ is a cube.

2022 Federal Competition For Advanced Students, P2, 5

Let $ABC$ be an isosceles triangle with base $AB$. We choose a point $P$ inside the triangle on altitude through $C$. The circle with diameter $CP$ intersects the straight line through $B$ and $P$ again at the point $D_P$ and the Straight through $A$ and $C$ one more time at point $E_P$. Prove that there is a point $F$ such that for any choice of $P$ the points $D_P , E_P$ and $F$ lie on a straight line. [i](Walther Janous)[/i]

2020 DMO Stage 1, 5.

[b]Q.[/b] Let $ABC$ be a triangle, where $L_A, L_B, L_C$ denote the internal angle bisectors of $\angle BAC, \angle ABC, \angle ACB$ respectively and $\ell_A, \ell_B, \ell_C$, the altitudes from the corresponding vertices. Suppose $ L_A\cap \overline{BC} = \{A_1\}$, $\ell_A \cap \overline{BC} = \{A_2\}$ and the circumcircle of $\triangle AA_1A_2$ meets $AB$ and $AC$ at $S$ and $T$ respectively. If $\overline{ST} \cap \overline{BC} = \{A'\}$, prove that $A',B',C'$ are collinear, where $B'$ and $C'$ are defined in a similar manner. [i]Proposed by Functional_equation[/i]