Found problems: 254
2018 Peru Iberoamerican Team Selection Test, P9
Let $\Gamma$ be the circumcircle of a triangle $ABC$ with $AB <BC$, and let $M$ be the midpoint from the side $AC$ . The median of side $AC$ cuts $\Gamma$ at points $X$ and $Y$ ($X$ in the arc $ABC$). The circumcircle of the triangle $BMY$ cuts the line $AB$ at $P$ ($P \ne B$) and the line $BC$ in $Q$ ($Q \ne B$). The circumcircles of the triangles $PBC$ and $QBA$ are cut in $R$ ($R \ne B$). Prove that points $X, B$ and $R$ are collinear.
2016 Saudi Arabia Pre-TST, 2.4
Let $ABC$ be a non isosceles triangle with circumcircle $(O)$ and incircle $(I)$. Denote $(O_1)$ as the circle that external tangent to $(O)$ at $A'$ and also tangent to the lines $AB,AC$ at $A_b,A_c$ respectively. Define the circles $(O_2), (O_3)$ and the points $B', C', B_c , B_a, C_a, C_b$ similarly.
1. Denote J as the radical center of $(O_1), (O_2), (O_3) $and suppose that $JA'$ intersects $(O_1)$ at the second point $X, JB'$ intersects $(O_2)$ at the second point Y , JC' intersects $(O_3)$ at the second point $Z$. Prove that the circle $(X Y Z)$ is tangent to $(O_1), (O_2), (O_3)$.
2. Prove that $AA', BB', CC'$ are concurrent at the point $M$ and $3$ points $I,M,O$ are collinear.
2004 Tournament Of Towns, 1
Segments $AB, BC$ and $CD$ of the broken line $ABCD$ are equal and are tangent to a circle with centre at the point $O$. Prove that the point of contact of this circle with $BC$, the point $O$ and the intersection point of $AC$ and $BD$ are collinear.
2023 Austrian MO Beginners' Competition, 2
Let $ABCDEF$ be a regular hexagon with sidelength s. The points $P$ and $Q$ are on the diagonals $BD$ and $DF$, respectively, such that $BP = DQ = s$. Prove that the three points $C$, $P$ and $Q$ are on a line.
[i](Walther Janous)[/i]
Swiss NMO - geometry, 2005.8
Let $ABC$ be an acute-angled triangle. $M ,N$ are any two points on the sides $AB , AC$ respectively. The circles with the diameters $BN$ and $CM$ intersect at points $P$ and $Q$. Show that the points $P, Q$ and the orthocenter of the triangle $ABC$ lie on a straight line.
2006 Sharygin Geometry Olympiad, 18
Two perpendicular lines are drawn through the orthocenter $H$ of triangle $ABC$, one of which intersects $BC$ at point $X$, and the other intersects $AC$ at point $Y$. Lines $AZ, BZ$ are parallel, respectively with $HX$ and $HY$. Prove that the points $X, Y, Z$ lie on the same line.
1971 IMO Shortlist, 12
Two congruent equilateral triangles $ABC$ and $A'B'C'$ in the plane are given. Show that the midpoints of the segments $AA',BB', CC'$ either are collinear or form an equilateral triangle.
2014 Thailand TSTST, 3
Let $O$ be the incenter of a tangential quadrilateral $ABCD$. Prove that the orthocenters of $\vartriangle AOB$, $\vartriangle BOC$, $\vartriangle COD$, $\vartriangle DOA$ lie on a line.
2015 Singapore Senior Math Olympiad, 1
In an acute-angled triangle $ABC$, $M$ is a point on the side $BC$, the line $AM$ meets the circumcircle $\omega$ of $ABC$ at the point $Q$ distinct from $A$. The tangent to $\omega$ at $Q$ intersects the line through $M$ perpendicular to the diameter $AK$ of $\omega$ at the point $P$. Let $L$ be the point on $\omega$ distinct from $Q$ such that $PL$ is tangent to $\omega$ at $L$. Prove that $L,M$ and $K$ are collinear.
2017 Latvia Baltic Way TST, 12
A diameter $AK$ is drawn for the circumscribed circle $\omega$ of an acute-angled triangle $ABC$, an arbitrary point $M$ is chosen on the segment $BC$, the straight line $AM$ intersects $\omega$ at point $Q$. The foot of the perpendicular drawn from $M$ on $AK$ is $D$, the tangent drawn to the circle $\omega$ through the point $Q$, intersects the straight line $MD$ at $P$. A point $L$ (different from $Q$) is chosen on $\omega$ such that $PL$ is tangent to $\omega$. Prove that points $L$, $M$ and $K$ lie on the same line.
2007 Thailand Mathematical Olympiad, 3
Two circles intersect at $X$ and $Y$ . The line through the centers of the circles intersect the first circle at $A$ and $C$, and intersect the second circle at $B$ and $D$ so that $A, B, C, D$ lie in this order. The common chord $XY$ cuts $BC$ at $P$, and a point $O$ is arbitrarily chosen on segment $XP$. Lines $CO$ and $BO$ are extended to intersect the first and second circles at $M$ and $N$, respectively. If lines $AM$ and $DN$ intersect at $Z$, prove that $X, Y$ and $Z$ lie on the same line.
2010 Korea Junior Math Olympiad, 7
Let $ABCD$ be a cyclic convex quadrilateral. Let $E$ be the intersection of lines $AB,CD$. $P$ is the intersection of line passing $B$ and perpendicular to $AC$, and line passing $C$ and perpendicular to $BD$. $Q$ is the intersection of line passing $D$ and perpendicular to $AC$, and line passing $A$ and perpendicular to $BD$. Prove that three points $E, P,Q$ are collinear.
1972 Vietnam National Olympiad, 3
$ABC$ is a triangle. $U$ is a point on the line $BC$. $I$ is the midpoint of $BC$. The line through $C$ parallel to $AI$ meets the line $AU$ at $E$. The line through $E$ parallel to $BC$ meets the line $AB$ at $F$. The line through $E$ parallel to $AB$ meets the line $BC$ at $H$. The line through $H$ parallel to $AU$ meets the line $AB$ at $K$. The lines $HK$ and $FG$ meet at $T. V$ is the point on the line $AU$ such that $A$ is the midpoint of $UV$. Show that $V, T$ and $I$ are collinear.
2005 Bosnia and Herzegovina Team Selection Test, 4
On the line which contains diameter $PQ$ of circle $k(S,r)$, point $A$ is chosen outside the circle such that tangent $t$ from point $A$ touches the circle in point $T$. Tangents on circle $k$ in points $P$ and $Q$ are $p$ and $q$, respectively. If $PT \cap q={N}$ and $QT \cap p={M}$, prove that points $A$, $M$ and $N$ are collinear.
2010 Oral Moscow Geometry Olympiad, 3
Two circles $w_1$ and $w_2$ intersect at points $A$ and $B$. Tangents $\ell_1$ and $\ell_2$ respectively are drawn to them through point $A$. The perpendiculars dropped from point $B$ to $\ell_2$ and $\ell_1$ intersects the circles $w_1$ and $w_2$, respectively, at points $K$ and $N$. Prove that points $K, A$ and $N$ lie on one straight line.
2015 Saudi Arabia BMO TST, 3
Let $ABC$ be a triangle, $H_a, H_b$ and $H_c$ the feet of its altitudes from $A, B$ and $C$, respectively, $T_a, T_b, T_c$ its touchpoints of the incircle with the sides $BC, CA$ and $AB$, respectively. The circumcircles of triangles $AH_bH_c$ and $AT_bT_c$ intersect again at $A'$. The circumcircles of triangles $BH_cH_a$ and $BT_cT_a$ intersect again at $B'$. The circumcircles of triangles $CH_aH_b$ and $CT_aT_b$ intersect again at $C'$. Prove that the points $A',B',C'$ are collinear.
Malik Talbi
2015 Indonesia MO Shortlist, G5
Let $ABC$ be an acute triangle. Suppose that circle $\Gamma_1$ has it's center on the side $AC$ and is tangent to the sides $AB$ and $BC$, and circle $\Gamma_2$ has it's center on the side $AB$ and is tangent to the sides $AC$ and $BC$. The circles $\Gamma_1$ and $ \Gamma_2$ intersect at two points $P$ and $Q$. Show that if $A, P, Q$ are collinear, then $AB = AC$.
2019 Ukraine Team Selection Test, 1
In a triangle $ABC$, $\angle ABC= 60^o$, point $I$ is the incenter. Let the points $P$ and $T$ on the sides $AB$ and $BC$ respectively such that $PI \parallel BC$ and $TI \parallel AB$ , and points $P_1$ and $T_1$ on the sides $AB$ and $BC$ respectively such that $AP_1 = BP$ and $CT_1 = BT$. Prove that point $I$ lies on segment $P_1T_1$.
(Anton Trygub)
2022 Oral Moscow Geometry Olympiad, 6
In an acute non-isosceles triangle $ABC$, the inscribed circle touches side $BC$ at point $T, Q$ is the midpoint of altitude $AK$, $P$ is the orthocenter of the triangle formed by the bisectors of angles $B$ and $C$ and line $AK$. Prove that the points $P, Q$ and $T$ lie on the same line.
(D. Prokopenko)
1993 Tournament Of Towns, (380) 2
Vertices $A$, $B$ and $C$ of a triangle are connected with points $A'$ , $B'$ and $C'$ lying in the opposite sides of the triangle (not at vertices). Can the midpoints of the segments $AA'$, $BB'$ and $CC'$ lie in a straight line?
(Folklore)
2017 Thailand TSTST, 5
Let $\omega_1, \omega_2$ be two circles with different radii, and let $H$ be the exsimilicenter of the two circles. A point X outside both circles is given. The tangents from $X$ to $\omega_1$ touch $\omega_1$ at $P, Q$, and the tangents from $X$ to $\omega_2$ touch $\omega_2$ at $R, S$. If $PR$ passes through $H$ and is not a common tangent line of $\omega_1, \omega_2$, prove that $QS$ also passes through $H$.
2017 Puerto Rico Team Selection Test, 3
In triangle $ABC$, the altitude through $B$ intersects $AC$ at $E$ and the altitude through $C$ intersects $AB$ at $F$. Point $T$ is such that $AETF$ is a parallelogram and points $ A$ ,$T$ lie on different half-planes wrt the line $EF$. Point $D$ is such that $ABDC$ is a parallelogram and points $ A$ ,$D$ lie in different half-planes wrt line $BC$. Prove that $T, D$ and the orthocenter of $ABC$ are collinear.
2009 All-Russian Olympiad Regional Round, 10.4
Circles $\omega_1$ and $\omega_2$ touch externally at the point $O$. Points $A$ and $B$ on the circle $\omega_1$ and points $C$ and $D$ on the circle $\omega_2$ are such that $AC$ and $BD$ are common external tangents to circles. Line $AO$ intersects segment $CD$ at point $M$ and straight line $CO$ intersexts $\omega_1$ again at point $N$. Prove that the points $B$, $M$ and $N$ lie on the same straight line.
2004 Tournament Of Towns, 4
Two circles intersect in points $A$ and $B$. Their common tangent nearer $B$ touches the circles at points $E$ and $F$, and intersects the extension of $AB$ at the point $M$. The point $K$ is chosen on the extention of $AM$ so that $KM = MA$. The line $KE$ intersects the circle containing $E$ again at the point $C$. The line $KF$ intersects the circle containing $F$ again at the point $D$. Prove that the points $A, C$ and $D$ are collinear.
Geometry Mathley 2011-12, 9.3
Let $ABCD$ be a quadrilateral inscribed in a circle $(O)$. Let $(O_1), (O_2), (O_3), (O_4)$ be the circles going through $(A,B), (B,C),(C,D),(D,A)$. Let $X, Y,Z, T$ be the second intersection of the pairs of the circles: $(O_1)$ and $(O_2), (O_2)$ and $(O_3), (O_3)$ and $(O_4), (O_4)$ and $(O_1)$.
(a) Prove that $X, Y,Z, T$ are on the same circle of radius $I$.
(b) Prove that the midpoints of the line segments $O_1O_3,O_2O_4,OI$ are collinear.
Nguyễn Văn Linh