This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1704

1978 All Soviet Union Mathematical Olympiad, 263

Given $n$ nonintersecting segments in the plane. Not a pair of those belong to the same straight line. We want to add several segments, connecting the ends of given ones, to obtain one nonselfintersecting broken line. Is it always possible?

VI Soros Olympiad 1999 - 2000 (Russia), 10.2

$37$ points are arbitrarily marked on the plane. Prove that among them there must be either two points at a distance greater than $6$, or two points at a distance less than $1.5$.

2003 Romania National Olympiad, 4

Let $ P$ be a plane. Prove that there exists no function $ f: P\rightarrow P$ such that for every convex quadrilateral $ ABCD$, the points $ f(A),f(B),f(C),f(D)$ are the vertices of a concave quadrilateral. [i]Dinu Şerbănescu[/i]

2019 Israel Olympic Revenge, P2

A $5779$-dimensional polytope is call a [b]$k$-tope[/b] if it has exactly $k$ $5778$-dimensional faces. Find all sequences $b_{5780}, b_{5781}, \dots, b_{11558}$ of nonnegative integers, not all $0$, such that the following condition holds: It is possible to tesselate every $5779$-dimensional polytope with [u]convex[/u] $5779$-dimensional polytopes, such that the number of $k$-topes in the tessellation is proportional to $b_k$, while there are no $k$-topes in the tessellation if $k\notin \{5780, 5781, \dots, 11558\}$.

1997 Slovenia Team Selection Test, 3

Let $A_1,A_2,...,A_n$ be $n \ge 2$ distinct points on a circle. Find the number of colorings of these points with $p \ge 2$ colors such that every two adjacent points receive different colors

1977 IMO Longlists, 5

A lattice point in the plane is a point both of whose coordinates are integers. Each lattice point has four neighboring points: upper, lower, left, and right. Let $k$ be a circle with radius $r \geq 2$, that does not pass through any lattice point. An interior boundary point is a lattice point lying inside the circle $k$ that has a neighboring point lying outside $k$. Similarly, an exterior boundary point is a lattice point lying outside the circle $k$ that has a neighboring point lying inside $k$. Prove that there are four more exterior boundary points than interior boundary points.

2013 Cuba MO, 6

$2013$ people run a marathon on a straight road $4m$ wide broad. At any given moment, no two runners are closer $2$ m from each other. Prove that there are two runners that at that moment are more than $1052$ m from each other. Note: Consider runners as points.

2004 Estonia Team Selection Test, 6

Call a convex polyhedron a [i]footballoid [/i] if it has the following properties. (1) Any face is either a regular pentagon or a regular hexagon. (2) All neighbours of a pentagonal face are hexagonal (a [i]neighbour [/i] of a face is a face that has a common edge with it). Find all possibilities for the number of pentagonal and hexagonal faces of a footballoid.

2013 Dutch IMO TST, 4

Let $n \ge 3$ be an integer, and consider a $n \times n$-board, divided into $n^2$ unit squares. For all $m \ge 1$, arbitrarily many $1\times m$-rectangles (type I) and arbitrarily many $m\times 1$-rectangles (type II) are available. We cover the board with $N$ such rectangles, without overlaps, and such that every rectangle lies entirely inside the board. We require that the number of type I rectangles used is equal to the number of type II rectangles used.(Note that a $1 \times 1$-rectangle has both types.) What is the minimal value of $N$ for which this is possible?

1995 Tournament Of Towns, (450) 6

Can it happen that $6$ parallelepipeds, no two of which have common points, are placed in space so that there is a point outside of them from which no vertex of a parallelepiped is visible? (The parallelepipeds are not transparent.) (V Proizvolov)

2012 Swedish Mathematical Competition, 5

The vertices of a regular $13$-gon are colored in three different colors. Show that there are three vertices which have the same color and are also the vertices of an isosceles triangle.

1997 May Olympiad, 3

There are $10000$ equal tiles in the shape of an equilateral triangle. With these little triangles, regular hexagons are formed, without overlaps or gaps. If the regular hexagon that wastes the fewest triangles is formed, how many triangles are left over?

2004 All-Russian Olympiad, 1

Each grid point of a cartesian plane is colored with one of three colors, whereby all three colors are used. Show that one can always find a right-angled triangle, whose three vertices have pairwise different colors.

2018 MMATHS, 3

Suppose $n$ points are uniformly chosen at random on the circumference of the unit circle and that they are then connected with line segments to form an $n$-gon. What is the probability that the origin is contained in the interior of this $n$-gon? Give your answer in terms of $n$, and consider only $n \ge 3$.

2015 Caucasus Mathematical Olympiad, 3

The workers laid a floor of size $n\times n$ ($10 <n <20$) with two types of tiles: $2 \times 2$ and $5\times 1$. It turned out that they were able to completely lay the floor so that the same number of tiles of each type was used. For which $n$ could this happen? (You can’t cut tiles and also put them on top of each other.)

1982 IMO Longlists, 48

Given a finite sequence of complex numbers $c_1, c_2, \ldots , c_n$, show that there exists an integer $k$ ($1 \leq k \leq n$) such that for every finite sequence $a_1, a_2, \ldots, a_n$ of real numbers with $1 \geq a_1 \geq a_2 \geq \cdots \geq a_n \geq 0$, the following inequality holds: \[\left| \sum_{m=1}^n a_mc_m \right| \leq \left| \sum_{m=1}^k c_m \right|.\]

2021 Caucasus Mathematical Olympiad, 7

4 tokens are placed in the plane. If the tokens are now at the vertices of a convex quadrilateral $P$, then the following move could be performed: choose one of the tokens and shift it in the direction perpendicular to the diagonal of $P$ not containing this token; while shifting tokens it is prohibited to get three collinear tokens. Suppose that initially tokens were at the vertices of a rectangle $\Pi$, and after a number of moves tokens were at the vertices of one another rectangle $\Pi'$ such that $\Pi'$ is similar to $\Pi$ but not equal to $\Pi $. Prove that $\Pi$ is a square.

2018 Argentina National Olympiad, 5

In the plane you have $2018$ points between which there are not three on the same line. These points are colored with $30$ colors so that no two colors have the same number of points. All triangles are formed with their three vertices of different colors. Determine the number of points for each of the $30$ colors so that the total number of triangles with the three vertices of different colors is as large as possible.

2016 Singapore Junior Math Olympiad, 5

Determine the minimum number of lines that can be drawn on the plane so that they intersect in exactly $200$ distinct points. (Note that for $3$ distinct points, the minimum number of lines is $3$ and for $4$ distinct points, the minimum is $4$)

1966 All Russian Mathematical Olympiad, 081

Given $100$ points on the plane. Prove that you can cover them with a family of circles with the sum of their diameters less than $100$ and the distance between any two of the circles more than one.

2014 Chile National Olympiad, 5

Prove that if a quadrilateral $ABCD$ can be cut into a finite number of parallelograms, then $ABCD$ is a parallelogram.

1976 Poland - Second Round, 3

We consider a spherical bowl without any great circle. The distance between points $A$ and $B$ on such a bowl is defined as the length of the arc of the great circle of the sphere with ends at points $A$ and $B$, which is contained in the bowl. Prove that there is no isometry mapping this bowl to a subset of the plane. Attention. A spherical bowl is each of the two parts into which the surface of the sphere is divided by a plane intersecting the sphere.

1996 All-Russian Olympiad Regional Round, 10.2

Is it true that from an arbitrary triangle you can cut three equal figures, the area of each of which is more than a quarter of the area triangle?

1972 Swedish Mathematical Competition, 2

A rectangular grid of streets has $m$ north-south streets and $n$ east-west streets. For which $m, n > 1$ is it possible to start at an intersection and drive through each of the other intersections just once before returning to the start?

2019 Paraguay Mathematical Olympiad, 2

Nair has puzzle pieces shaped like an equilateral triangle. She has pieces of two sizes: large and small. [img]https://cdn.artofproblemsolving.com/attachments/a/1/aedfbfb2cb17bf816aa7daeb0d35f46a79b6e9.jpg[/img] Nair build triangular figures by following these rules: $\bullet$ Figure $1$ is made up of $4$ small pieces, Figure $2$ is made up of $2$ large pieces and $8$ small, Figure $3$ by $6$ large and $12$ small, and so on. $\bullet$ The central column must be made up exclusively of small parts. $\bullet$ Outside the central column, only large pieces can be placed. [img]https://cdn.artofproblemsolving.com/attachments/5/7/e7f6340de0e04d5b5979e72edd3f453f2ac8a5.jpg[/img] Following the pattern, how many pieces will Nair use to build Figure $20$?