This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1704

2018 Serbia National Math Olympiad, 3

Let $n$ be a positive integer. There are given $n$ lines such that no two are parallel and no three meet at a single point. a) Prove that there exists a line such that the number of intersection points of these $n$ lines on both of its sides is at least $$\left \lfloor \frac{(n-1)(n-2)}{10} \right \rfloor.$$ Notice that the points on the line are not counted. b) Find all $n$ for which there exists a configurations where the equality is achieved.

2007 Junior Balkan Team Selection Tests - Moldova, 7

Show that there is a square with side length $14$ whose floor may be covered (exact coverage of the square area) by $21$ squares so that between them there is exactly $6$ squares with side length $1$, $5$ squares with side length $2$, $4$ squares with side length $3$, $3$ squares with side length $4$, $2$ squares with side length $5$ and a square with side length $6$ .

2012 QEDMO 11th, 7

In the following, a rhombus is one with edge length $1$ and interior angles $60^o$ and $120^o$ . Now let $n$ be a natural number and $H$ a regular hexagon with edge length $n$, which is covered with rhombuses without overlapping has been. The rhombuses then appear in three different orientations. Prove that whatever the overlap looks exactly, each of these three orientations can be viewed at the same time.

2015 India Regional MathematicaI Olympiad, 4

Suppose $28$ objects are placed along a circle at equal distances. In how many ways can $3$ objects be chosen from among them so that no two of the three chosen objects are adjacent nor diametrically opposite?

2023 APMO, 1

Let $n \geq 5$ be an integer. Consider $n$ squares with side lengths $1, 2, \dots , n$, respectively. The squares are arranged in the plane with their sides parallel to the $x$ and $y$ axes. Suppose that no two squares touch, except possibly at their vertices. Show that it is possible to arrange these squares in a way such that every square touches exactly two other squares.

1945 Moscow Mathematical Olympiad, 100

Suppose we have two identical cardboard polygons. We placed one polygon upon the other one and aligned. Then we pierced polygons with a pin at a point. Then we turned one of the polygons around this pin by $25^o 30'$. It turned out that the polygons coincided (aligned again). What is the minimal possible number of sides of the polygons?

2005 Oral Moscow Geometry Olympiad, 3

$ABCBE$ is a regular pentagon. Point $B'$ is symmetric to point $B$ wrt line $AC$ (see figure). Is it possible to pave the plane with pentagons equal to $AB'CBE$? (S. Markelov) [img]https://cdn.artofproblemsolving.com/attachments/9/2/cbb5756517e85e56c4a931e761a6b4da8fe547.png[/img]

2007 Rioplatense Mathematical Olympiad, Level 3, 5

Divide each side of a triangle into $50$ equal parts, and each point of the division is joined to the opposite vertex by a segment. Calculate the number of intersection points determined by these segments. Clarification : the vertices of the original triangle are not considered points of intersection or division.

2005 Oral Moscow Geometry Olympiad, 6

Six straight lines are drawn on the plane. It is known that for any three of them there is a fourth of the same set of lines, such that all four will touch some circle. Do all six lines necessarily touch the same circle? (I. Bogdanov)

2015 Dutch IMO TST, 1

Let $a$ and $b$ be two positive integers satifying $gcd(a, b) = 1$. Consider a pawn standing on the grid point $(x, y)$. A step of type A consists of moving the pawn to one of the following grid points: $(x+a, y+a),(x+a,y-a), (x-a, y + a)$ or $(x - a, y - a)$. A step of type B consists of moving the pawn to $(x + b,y + b),(x + b,y - b), (x - b,y + b)$ or $(x - b,y - b)$. Now put a pawn on $(0, 0)$. You can make a ( nite) number of steps, alternatingly of type A and type B, starting with a step of type A. You can make an even or odd number of steps, i.e., the last step could be of either type A or type B. Determine the set of all grid points $(x,y)$ that you can reach with such a series of steps.

1956 Moscow Mathematical Olympiad, 341

$1956$ points are chosen in a cube with edge $13$. Is it possible to fit inside the cube a cube with edge $1$ that would not contain any of the selected points?

2007 Swedish Mathematical Competition, 4

There are a number of arcs on the edge of a circular disk. Each pair of arcs has the least one point in common. Show that on the circle you can choose two diametrical opposites points such that each arc contains at least one of these two points.

2007 Balkan MO, 4

For a given positive integer $n >2$, let $C_{1},C_{2},C_{3}$ be the boundaries of three convex $n-$ gons in the plane , such that $C_{1}\cap C_{2}, C_{2}\cap C_{3},C_{1}\cap C_{3}$ are finite. Find the maximum number of points of the sets $C_{1}\cap C_{2}\cap C_{3}$.

1983 Poland - Second Round, 1

On a plane with a fixed coordinate system, there is a convex polygon whose all vertices have integer coordinates. Prove that twice the area of this polygon is an integer.

2011 Miklós Schweitzer, 6

Let $C_1, ..., C_d$ be compact and connected sets in $R^d$, and suppose that each convex hull of $C_i$ contains the origin. Prove that for every i there is a $c_i \in C_i$ for which the origin is contained in the convex hull of the points $c_1, ..., c_d$.

1988 Tournament Of Towns, (198) 1

What is the smallest number of squares of a chess board that can be marked in such a manner that (a) no two marked squares may have a common side or a common vertex, and (b) any unmarked square has a common side or a common vertex with at least one marked square? Indicate a specific configuration of marked squares satisfying (a) and (b) and show that a lesser number of marked squares will not suffice. (A. Andjans, Riga)

2015 QEDMO 14th, 11

Let $m, n$ be natural numbers and let $m\cdot n$ be a multiple of $4$. A chessboard with $m \times n$ fields are covered with $1 \times 2$ large dominoes without gaps and without overlapping. Show that the number of dominoes that are parallel to a edge of the chess board is fixed . [hide=original wording] Seien m, n natu¨rliche Zahlen und sei m · n ein Vielfaches von 4. Ein Schachbrett mit m × n Feldern sei mit 1 × 2 großen Dominosteinen lu¨ckenlos und u¨berlappungsfrei u¨berdeckt. Zeige, dass die Anzahl der Dominosteine, die zu einer fest gew¨ahlten Kante des Schachbrettes parallel sind, gerade ist. [/hide]

2008 Indonesia TST, 1

Let $ABCD$ be a square with side $20$ and $T_1, T_2, ..., T_{2000}$ are points in $ABCD$ such that no $3$ points in the set $S = \{A, B, C, D, T_1, T_2, ..., T_{2000}\}$ are collinear. Prove that there exists a triangle with vertices in $S$, such that the area is less than $1/10$.

2017 Latvia Baltic Way TST, 5

A [i]magic[/i] octagon is an octagon whose sides follow the lines of the checkerboard's checkers and the side lengths are $1, 2, 3, 4, 5, 6, 7, 8$ (in any order). What is the largest possible area of the magic octagon? [hide=original wording]Burvju astoņstūris ar astoņstūris, kura malas iet pa rūtiņu lapas rūtiņu līnijām un malu garumi ir 1, 2,3, 4, 5, 6, 7, 8 (jebkādā secībā). Kāds ir lielākais iespējamais burvju astoņstūra laukums?[/hide]

1999 Tournament Of Towns, 5

Is it possible to divide a $8 \times 8$ chessboard into $32$ rectangles, each either $1 \times 2$ or $2 \times 1$, and to draw exactly one diagonal on each rectangle such that no two of these diagonals have a common endpoint? (A Shapovalov)

2014 Contests, 3

We have $4n + 5$ points on the plane, no three of them are collinear. The points are colored with two colors. Prove that from the points we can form $n$ empty triangles (they have no colored points in their interiors) with pairwise disjoint interiors, such that all points occurring as vertices of the $n$ triangles have the same color.

2011 Romanian Master of Mathematics, 5

For every $n\geq 3$, determine all the configurations of $n$ distinct points $X_1,X_2,\ldots,X_n$ in the plane, with the property that for any pair of distinct points $X_i$, $X_j$ there exists a permutation $\sigma$ of the integers $\{1,\ldots,n\}$, such that $\textrm{d}(X_i,X_k) = \textrm{d}(X_j,X_{\sigma(k)})$ for all $1\leq k \leq n$. (We write $\textrm{d}(X,Y)$ to denote the distance between points $X$ and $Y$.) [i](United Kingdom) Luke Betts[/i]

2024 Iranian Geometry Olympiad, 4

An inscribed $n$-gon ($n > 3$), is divided into $n-2$ triangles by diagonals which meet only in vertices. What is the maximum possible number of congruent triangles obtained? (An inscribed $n$-gon is an $n$-gon where all its vertices lie on a circle) [i]Proposed by Boris Frenkin - Russia[/i]

1996 Tuymaada Olympiad, 3

Nine points of the plane, located at the vertices of a regular nonagon, are pairwise connected by segments, each of which is colored either red or blue. It is known that in any triangle with vertices at the vertices of the nonagon at least one side is red. Prove that there are four points, any two of which are connected by red lines.

2012 Today's Calculation Of Integral, 816

Find the volume of the solid of a circle $x^2+(y-1)^2=4$ generated by a rotation about the $x$-axis.