Found problems: 478
2002 India IMO Training Camp, 4
Let $O$ be the circumcenter and $H$ the orthocenter of an acute triangle $ABC$. Show that there exist points $D$, $E$, and $F$ on sides $BC$, $CA$, and $AB$ respectively such that \[ OD + DH = OE + EH = OF + FH\] and the lines $AD$, $BE$, and $CF$ are concurrent.
2001 Nordic, 4
Let ${ABCDEF}$ be a convex hexagon, in which each of the diagonals ${AD, BE}$ , and ${CF}$ divides the hexagon into two quadrilaterals of equal area. Show that ${AD, BE}$ , and ${CF}$ are concurrent.
2010 Balkan MO Shortlist, G3
The incircle of a triangle $A_0B_0C_0$ touches the sides $B_0C_0,C_0A_0,A_0B_0$ at the points $A,B,C$ respectively, and the incircle of the triangle $ABC$ with incenter $ I$ touches the sides $BC,CA, AB$ at the points $A_1, B_1,C_1$, respectively. Let $\sigma(ABC)$ and $\sigma(A_1B_1C)$ be the areas of the triangles $ABC$ and $A_1B_1C$ respectively. Show that if $\sigma(ABC) = 2 \sigma(A_1B_1C)$ , then the lines $AA_0, BB_0,IC_1$ pass through a common point .
2021 Sharygin Geometry Olympiad, 8.2
Three parallel lines $\ell_a, \ell_b, \ell_c$ pass through the vertices of triangle $ABC$. A line $a$ is the reflection of altitude $AH_a$ about $\ell_a$. Lines $b, c$ are defined similarly. Prove that $a, b, c$ are concurrent.
2014 Oral Moscow Geometry Olympiad, 4
In triangle $ABC$, the perpendicular bisectors of sides $AB$ and $BC$ intersect side $AC$ at points $P$ and $Q$, respectively, with point $P$ lying on the segment $AQ$. Prove that the circumscribed circles of the triangles $PBC$ and $QBA$ intersect on the bisector of the angle $PBQ$.
2011 Sharygin Geometry Olympiad, 3
The line passing through vertex $A$ of triangle $ABC$ and parallel to $BC$ meets the circumcircle of $ABC$ for the second time at point $A_1$. Points $B_1$ and $C_1$ are defined similarly. Prove that the perpendiculars from $A_1, B_1, C_1$ to $BC, CA, AB$ respectively concur.
2003 Cuba MO, 9
Let $D$ be the midpoint of the base $AB$ of the isosceles and acute angle triangle $ABC$, $E$ is a point on $AB$ and $O$ circumcenter of the triangle $ACE$. Prove that the line that passes through $D$ perpendicular to $DO$, the line that passes through $E$ perpendicular to $BC$ and the line that passes through$ B$ parallel to $AC$, they intersect at a point.
Estonia Open Senior - geometry, 2014.2.3
The angles of a triangle are $22.5^o, 45^o$ and $112.5^o$. Prove that inside this triangle there exists a point that is located on the median through one vertex, the angle bisector through another vertex and the altitude through the third vertex.
2022 Turkey Team Selection Test, 3
In a triangle $ABC$, the incircle centered at $I$ is tangent to the sides $BC, AC$ and $AB$ at $D, E$ and $F$, respectively. Let $X, Y$ and $Z$ be the feet of the perpendiculars drawn from $A, B$ and $C$ to a line $\ell$ passing through $I$. Prove that $DX, EY$ and $FZ$ are concurrent.
2022 Kazakhstan National Olympiad, 4
$P$ and $Q$ are points on angle bisectors of two adjacent angles. Let $PA$, $PB$, $QC$ and $QD$ be altitudes on the sides of these adjacent angles. Prove that lines $AB$, $CD$ and $PQ$ are concurrent.
2022 Regional Competition For Advanced Students, 3
Let $ABC$ denote a triangle with $AC\ne BC$. Let $I$ and $U$ denote the incenter and circumcenter of the triangle $ABC$, respectively. The incircle touches $BC$ and $AC$ in the points $D$ and E, respectively. The circumcircles of the triangles $ABC$ and $CDE$ intersect in the two points $C$ and $P$. Prove that the common point $S$ of the lines $CU$ and $P I$ lies on the circumcircle of the triangle $ABC$.
[i](Karl Czakler)[/i]
1992 Tournament Of Towns, (327) 4
Let $P$ be a point on the circumcircle of triangle $ABC$. Construct an arbitrary triangle $A_1B_1C_1$ whose sides $A_1B_1$, $B_1C_1$ and $C_1A_1$ are parallel to the segments $PC$, $PA$ and $PB$ respectively and draw lines through the vertices $A_1$, $B_1$ and $C_1$ and parallel to the sides $BC$, $CA$ and $AB$ respectively. Prove that these three lines have a common point lying on the circumcircle of triangle $A_1B_1C_1$.
(V. Prasolov)
2005 Sharygin Geometry Olympiad, 11.1
$A_1, B_1, C_1$ are the midpoints of the sides $BC,CA,BA$ respectively of an equilateral triangle $ABC$. Three parallel lines, passing through $A_1, B_1, C_1$ intersect, respectively, lines $B_1C_1, C_1A_1, A_1B_1$ at points $A_2, B_2, C_2$. Prove that the lines $AA_2, BB_2, CC_2$ intersect at one point lying on the circle circumscribed around the triangle $ABC$.
2019 Germany Team Selection Test, 3
A point $T$ is chosen inside a triangle $ABC$. Let $A_1$, $B_1$, and $C_1$ be the reflections of $T$ in $BC$, $CA$, and $AB$, respectively. Let $\Omega$ be the circumcircle of the triangle $A_1B_1C_1$. The lines $A_1T$, $B_1T$, and $C_1T$ meet $\Omega$ again at $A_2$, $B_2$, and $C_2$, respectively. Prove that the lines $AA_2$, $BB_2$, and $CC_2$ are concurrent on $\Omega$.
[i]Proposed by Mongolia[/i]
2017 Sharygin Geometry Olympiad, P16
The tangents to the circumcircle of triangle $ABC$ at $A$ and $B$ meet at point $D$. The circle passing through the projections of $D$ to $BC, CA, AB$, meet $AB$ for the second time at point $C'$. Points $A', B'$ are defined similarly. Prove that $AA', BB', CC'$ concur.
1977 All Soviet Union Mathematical Olympiad, 237
a) Given a circle with two inscribed triangles $T_1$ and $T_2$. The vertices of $T_1$ are the midpoints of the arcs with the ends in the vertices of $T_2$. Consider a hexagon -- the intersection of $T_1$ and $T_2$. Prove that its main diagonals are parallel to $T_1$ sides and are intersecting in one point.
b) The segment, that connects the midpoints of the arcs $AB$ and $AC$ of the circle circumscribed around the $ABC$ triangle, intersects $[AB]$ and $[AC]$ sides in $D$ and $K$ points. Prove that the points $A,D,K$ and $O$ -- the centre of the circle -- are the vertices of a diamond.
2019 Balkan MO Shortlist, G7
Let $AD, BE$, and $CF$ denote the altitudes of triangle $\vartriangle ABC$. Points $E'$ and $F'$ are the reflections of $E$ and $F$ over $AD$, respectively. The lines $BF'$ and $CE'$ intersect at $X$, while the lines $BE'$ and $CF'$ intersect at the point $Y$. Prove that if $H$ is the orthocenter of $\vartriangle ABC$, then the lines $AX, YH$, and $BC$ are concurrent.
2003 Singapore Team Selection Test, 2
Three chords $AB, CD$ and $EF$ of a circle intersect at the midpoint $M$ of $AB$. Show that if $CE$ produced and $DF$ produced meet the line $AB$ at the points $P$ and $Q$ respectively, then $M$ is also the midpoint of $PQ$.
2020 European Mathematical Cup, 1
Let $ABCD$ be a parallelogram such that $|AB| > |BC|$. Let $O$ be a point on the line $CD$ such that $|OB| = |OD|$. Let $\omega$ be a circle with center $O$ and radius $|OC|$. If $T$ is the second intersection of $\omega$ and $CD$, prove that $AT, BO$ and $\omega$ are concurrent.
[i]Proposed by Ivan Novak[/i]
Geometry Mathley 2011-12, 10.3
Let $ABC$ be a triangle inscribed in a circle $(O)$. d is the tangent at $A$ of $(O), P$ is an arbitrary point in the plane. $D,E, F$ are the projections of $P$ on $BC,CA,AB$. Let $DE,DF$ intersect the line $d$ at $M,N$ respectively. The circumcircle of triangle $DEF$ meets $CA,AB$ at $K,L$ distinct from $E, F$. Prove that $KN$ meets $LM$ at a point on the circumcircle of triangle $DEF$.
Trần Quang Hùng
2022 Saudi Arabia IMO TST, 2
Let $ABCD$ be a quadrilateral inscribed in a circle $\Omega.$ Let the tangent to $\Omega$ at $D$ meet rays $BA$ and $BC$ at $E$ and $F,$ respectively. A point $T$ is chosen inside $\triangle ABC$ so that $\overline{TE}\parallel\overline{CD}$ and $\overline{TF}\parallel\overline{AD}.$ Let $K\ne D$ be a point on segment $DF$ satisfying $TD=TK.$ Prove that lines $AC,DT,$ and $BK$ are concurrent.
2013 Saudi Arabia IMO TST, 1
Triangle $ABC$ is inscribed in circle $\omega$. Point $P$ lies inside triangle $ABC$.Lines $AP,BP$ and $CP$ intersect $\omega$ again at points $A_1$, $B_1$ and $C_1$ (other than $A, B, C$), respectively. The tangent lines to $\omega$ at $A_1$ and $B_1$ intersect at $C_2$.The tangent lines to $\omega$ at $B_1$ and $C_1$ intersect at $A_2$. The tangent lines to $\omega$ at $C_1$ and $A_1$ intersect at $B_2$. Prove that the lines $AA_2,BB_2$ and $CC_2$ are concurrent.
2018 Estonia Team Selection Test, 7
Let $AD$ be the altitude $ABC$ of an acute triangle. On the line $AD$ are chosen different points $E$ and $F$ so that $|DE |= |DF|$ and point $E$ is in the interior of triangle $ABC$. The circumcircle of triangle $BEF$ intersects $BC$ and $BA$ for second time at points $K$ and $M$ respectively. The circumcircle of the triangle $CEF$ intersects the $CB$ and $CA$ for the second time at points $L$ and $N$ respectively. Prove that the lines $AD, KM$ and $LN$ intersect at one point.
2013 Saudi Arabia Pre-TST, 3.4
$\vartriangle ABC$ is a triangle with $AB < BC, \Gamma$ its circumcircle, $K$ the midpoint of the minor arc $CA$ of the circle $C$ and $T$ a point on $\Gamma$ such that $KT$ is perpendicular to $BC$. If $A',B'$ are the intouch points of the incircle of $\vartriangle ABC$ with the sides $BC,AC$, prove that the lines $AT,BK,A'B'$ are concurrent.
2022 Saudi Arabia IMO TST, 3
Let $A,B,C,D$ be points on the line $d$ in that order and $AB = CD$. Denote $(P)$ as some circle that passes through $A, B$ with its tangent lines at $A, B$ are $a,b$. Denote $(Q)$ as some circle that passes through $C, D$ with its tangent lines at $C, D$ are $c,d$. Suppose that $a$ cuts $c, d$ at $K, L$ respectively and $b$ cuts $c, d$ at $M, N$ respectively. Prove that four points $K, L, M,N$ belong to a same circle $(\omega)$ and the common external tangent lines of circles $(P)$, $(Q)$ meet on $(\omega)$.