This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 257

2005 Switzerland - Final Round, 1

Let $ABC$ be any triangle and $D, E, F$ the midpoints of $BC, CA, AB$. The medians $AD, BE$ and $CF$ intersect at point $S$. At least two of the quadrilaterals $AF SE, BDSF, CESD$ are cyclic. Show that the triangle $ABC$ is equilateral.

2021 Yasinsky Geometry Olympiad, 3

Prove that in triangle $ABC$, the foot of the altitude $AH$, the point of tangency of the inscribed circle with side $BC$ and projections of point $A$ on the bisectors $\angle B$ and $\angle C$ of the triangle lie on one circle. (Dmitry Prokopenko)

2017-IMOC, G7

Given $\vartriangle ABC$ with circumcenter $O$. Let $D$ be a point satisfying $\angle ABD = \angle DCA$ and $M$ be the midpoint of $AD$. Suppose that $BM,CM$ intersect circle $(O)$ at another points $E, F$, respectively. Let $P$ be a point on $EF$ so that $AP$ is tangent to circle $(O)$. Prove that $A, P,M,O$ are concyclic. [img]https://2.bp.blogspot.com/-gSgUG6oywAU/XnSKTnH1yqI/AAAAAAAALdw/3NuPFuouCUMO_6KbydE-KIt6gCJ4OgWdACK4BGAYYCw/s320/imoc2017%2Bg7.png[/img]

2014 Saudi Arabia GMO TST, 4

Let $ABC$ be a triangle, $D$ the midpoint of side $BC$ and $E$ the intersection point of the bisector of angle $\angle BAC$ with side $BC$. The perpendicular bisector of $AE$ intersects the bisectors of angles $\angle CBA$ and $\angle CDA$ at $M$ and $N$, respectively. The bisectors of angles $\angle CBA$ and $\angle CDA$ intersect at $P$ . Prove that points $A, M, N, P$ are concyclic.

2019 Oral Moscow Geometry Olympiad, 3

In the acute triangle $ABC, \angle ABC = 60^o , O$ is the center of the circumscribed circle and $H$ is the orthocenter. The angle bisector $BL$ intersects the circumscribed circle at the point $W, X$ is the intersection point of segments $WH$ and $AC$ . Prove that points $O, L, X$ and $H$ lie on the same circle.

2012 Dutch BxMO/EGMO TST, 2

Let $\triangle ABC$ be a triangle and let $X$ be a point in the interior of the triangle. The second intersection points of the lines $XA,XB$ and $XC$ with the circumcircle of $\triangle ABC$ are $P,Q$ and $R$. Let $U$ be a point on the ray $XP$ (these are the points on the line $XP$ such that $P$ and $U$ lie on the same side of $X$). The line through $U$ parallel to $AB$ intersects $BQ$ in $V$ . The line through $U$ parallel to $AC$ intersects $CR$ in $W$. Prove that $Q, R, V$ , and $W$ lie on a circle.

the 5th XMO, 1

Let $\vartriangle ABC$ be an acute triangle with altitudes $AD$, $BE$, $CF$ and orthocenter $H$. Circle $\odot V$ is the circumcircle of $\vartriangle DE F$. Let segments $FD$, $BH$ intersect at point $P$. Let segments $ED$, $HC$ intersect at point $Q$. Let $K$ be a point on $AC$ such that $VK \perp CF$. a) Prove that $\vartriangle PQH \sim \vartriangle AKV$. b) Let line $PQ$ intersect $\odot V$ at points $I,G$. Prove that points $B,I,H,G,C$ are concyclic [hide]with center the symmetric point $X$ of circumcenter $O$ of $\vartriangle ABC$ wrt $BC$.[/hide] [hide=PS.] There is a chance that those in the hide were not wanted in the problem, as I tried to understand the wording from a solutions' video. I couldn't find the original wording pdf or picture.[/hide] [img]https://cdn.artofproblemsolving.com/attachments/c/3/0b934c5756461ff854d38f51ef4f76d55cbd95.png[/img] [url=https://www.geogebra.org/m/cjduebke]geogebra file[/url]

1995 Czech and Slovak Match, 5

The diagonals of a convex quadrilateral $ABCD$ are orthogonal and intersect at point $E$. Prove that the reflections of $E$ in the sides of quadrilateral $ABCD$ lie on a circle.

2010 Greece JBMO TST, 3

Given an acute and scalene triangle $ABC$ with $AB<AC$ and random line $(e)$ that passes throuh the center of the circumscribed circles $c(O,R)$. Line $(e)$, intersects sides $BC,AC,AB$ at points $A_1,B_1,C_1$ respectively (point $C_1$ lies on the extension of $AB$ towards $B$). Perpendicular from $A$ on line $(e)$ and $AA_1$ intersect circumscribed circle $c(O,R)$ at points $M$ and $A_2$ respectively. Prove that a) points $O,A_1,A_2, M$ are consyclic b) if $(c_2)$ is the circumcircle of triangle $(OBC_1)$ and $(c_3)$ is the circumcircle of triangle $(OCB_1)$, then circles $(c_1),(c_2)$ and $(c_3)$ have a common chord

2019 Philippine MO, 4

In acute triangle $ABC $with $\angle BAC > \angle BCA$, let $P$ be the point on side $BC$ such that $\angle PAB = \angle BCA$. The circumcircle of triangle $AP B$ meets side $AC$ again at $Q$. Point $D$ lies on segment $AP$ such that $\angle QDC = \angle CAP$. Point $E$ lies on line $BD$ such that $CE = CD$. The circumcircle of triangle $CQE$ meets segment $CD$ again at $F$, and line $QF$ meets side $BC$ at $G$. Show that $B, D, F$, and $G$ are concyclic

2013 Saudi Arabia BMO TST, 1

$ABCD$ is a cyclic quadrilateral and $\omega$ its circumcircle. The perpendicular line to $AC$ at $D$ intersects $AC$ at $E$ and $\omega$ at F. Denote by $\ell$ the perpendicular line to $BC$ at $F$. The perpendicular line to $\ell$ at A intersects $\ell$ at $G$ and $\omega$ at $H$. Line $GE$ intersects $FH$ at $I$ and $CD$ at $J$. Prove that points $C, F, I$ and $J$ are concyclic

1969 Poland - Second Round, 3

Given a quadrilateral $ ABCD $ inscribed in a circle. The images of the points $ A $ and $ C $ in symmetry with respect to the line $ BD $ are the points $ A' $ and $ C' $, respectively, and the images of the points $ B $ and $ D $ in symmetry with respect to the line $ AC $ are the points $ B'$ and $D'$ respectively. Prove that the points $ A' $, $ B' $, $ C' $, $ D' $ lie on the circle.

Durer Math Competition CD Finals - geometry, 2013.C5

The points $A, B, C, D, P$ lie on an circle as shown in the figure such that $\angle AP B = \angle BPC = \angle CPD$. Prove that the lengths of the segments are denoted by $a, b, c, d$ by $\frac{a + c}{b + d} =\frac{b}{c}$. [img]https://cdn.artofproblemsolving.com/attachments/a/2/ba8965f5d7d180426db26e8f7dd5c7ad02c440.png[/img]

1989 Romania Team Selection Test, 3

Let $ABCD$ be a parallelogram and $M,N$ be points in the plane such that $C \in (AM)$ and $D \in (BN)$. Lines $NA,NC$ meet lines $MB,MD$ at points $E,F,G,H$. Show that points $E,F,G,H$ lie on a circle if and only if $ABCD$ is a rhombus.

Geometry Mathley 2011-12, 15.2

Let $O$ be the centre of the circumcircle of triangle $ABC$. Point $D$ is on the side $BC$. Let $(K)$ be the circumcircle of $ABD$. $(K)$ meets $AO$ at $E$ that is distinct from $A$. (a) Prove that $B,K,O,E$ are on the same circle that is called $(L)$. (b) $(L)$ intersects $AB$ at $F$ distinct $B$. Point $G$ is on $(L)$ such that $EG \parallel OF$. $GK$ meets $AD$ at $S, SO$ meets $BC$ at $T$ . Prove that $O,E, T,C$ are on the same circle. Trần Quang Hùng

2009 Abels Math Contest (Norwegian MO) Final, 3a

In the triangle $ABC$ the edge $BC$ has length $a$, the edge $AC$ length $b$, and the edge $AB$ length $c$. Extend all the edges at both ends – by the length $a$ from the vertex $A, b$ from $B$, and $c$ from $C$. Show that the six endpoints of the extended edges all lie on a common circle. [img]https://cdn.artofproblemsolving.com/attachments/8/7/14c8c6a4090d4fade28893729a510d263e7abb.png[/img]

2015 Ukraine Team Selection Test, 6

Given an acute triangle $ABC, H$ is the foot of the altitude drawn from the point $A$ on the line $BC, P$ and $K \ne H$ are arbitrary points on the segments $AH$ and$ BC$ respectively. Segments $AC$ and $BP$ intersect at point $B_1$, lines $AB$ and $CP$ at point $C_1$. Let $X$ and $Y$ be the projections of point $H$ on the lines $KB_1$ and $KC_1$, respectively. Prove that points $A, P, X$ and $Y$ lie on one circle.

2002 All-Russian Olympiad Regional Round, 9.3

In an isosceles triangle $ABC$ ($AB = BC$), point $O$ is the center of the circumcircle. Point $M$ lies on the segment $BO$, point $M' $ is symmetric to $M$ wrt the midpoint of $AB$. Point K is the intersection point of of $M'O$ and $AB$. Point $L$ lies on side BC such that $\angle CLO = \angle BLM$. Prove that points $O, K,B,L$ lie on the same circle

Kyiv City MO Seniors 2003+ geometry, 2017.11.5

In the acute isosceles triangle $ABC$ the altitudes $BB_1$ and $CC_1$ are drawn, which intersect at the point $H$. Let $L_1$ and $L_2$ be the feet of the angle bisectors of the triangles $B_1AC_1$ and $B_1HC_1$ drawn from vertices $A$ and $H$, respectively. The circumscribed circles of triangles $AHL_1$ and $AHL_2$ intersects the line $B_1C_1$ for the second time at points $P$ and $Q$, respectively. Prove that points $B, C, P$ and $Q$ lie on the same circle. (M. Plotnikov, D. Hilko)

2006 Estonia Team Selection Test, 4

The side $AC$ of an acute triangle $ABC$ is the diameter of the circle $c_1$ and side $BC$ is the diameter of the circle $c_2$. Let $E$ be the foot of the altitude drawn from the vertex $B$ of the triangle and $F$ the foot of the altitude drawn from the vertex $A$. In addition, let $L$ and $N$ be the points of intersection of the line $BE$ with the circle $c_1$ (the point $L$ lies on the segment $BE$) and the points of intersection of $K$ and $M$ of line $AF$ with circle $c_2$ (point $K$ is in section $AF$). Prove that $K LM N$ is a cyclic quadrilateral.

1994 All-Russian Olympiad Regional Round, 11.3

A circle with center $O$ is tangent to the sides $AB$, $BC$, $AC$ of a triangle $ABC$ at points $E,F,D$ respectively. The lines $AO$ and $CO$ meet $EF$ at points $N$ and $M$. Prove that the circumcircle of triangle $OMN$ and points $O$ and $D$ lie on a line.

2013 Saudi Arabia IMO TST, 2

Let $ABC$ be an acute triangle, and let $AA_1, BB_1$, and $CC_1$ be its altitudes. Segments $AA_1$ and $B_1C_1$ meet at point $K$. The perpendicular bisector of segment $A_1K$ intersects sides $AB$ and $AC$ at $L$ and $M$, respectively. Prove that points $A,A_1, L$, and $M$ lie on a circle.

2014 Switzerland - Final Round, 8

In the acute-angled triangle $ABC$, let $M$ be the midpoint of the atlitude $h_b$ through $B$ and $N$ be the midpoint of the height $h_c$ through $C$. Further let $P$ be the intersection of $AM$ and $h_c$ and $Q$ be the intersection of $AN$ and $h_b$. Show that $M, N, P$ and $Q$ lie on a circle.

Swiss NMO - geometry, 2006.5

A circle $k_1$ lies within a second circle $k_2$ and touches it at point $A$. A line through $A$ intersects $k_1$ again in $B$ and $k_2$ in $C$. The tangent to $k_1$ through $B$ intersects $k_2$ at points $D$ and $E$. The tangents at $k_1$ passing through $C$ intersects $k_1$ in points $F$ and $G$. Prove that $D, E, F$ and $G$ lie on a circle.

2019 Saudi Arabia Pre-TST + Training Tests, 2.3

Let $ABC$ be a triangle with $A',B',C'$ are midpoints of $BC,CA,AB$ respectively. The circle $(\omega_A)$ of center $A$ has a big enough radius cuts $B'C'$ at $X_1,X_2$. Define circles $(\omega_B), (\omega_C)$ with $Y_1, Y_2,Z_1,Z_2$ similarly. Suppose that these circles have the same radius, prove that $X_1,X_2, Y_1, Y_2,Z_1,Z_2$ are concyclic.