This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 107

1982 AMC 12/AHSME, 22

In a narrow alley of width $w$ a ladder of length $a$ is placed with its foot at point $P$ between the walls. Resting against one wall at $Q$, the distance $k$ above the ground makes a $45^\circ$ angle with the ground. Resting against the other wall at $R$, a distance $h$ above the ground, the ladder makes a $75^\circ$ angle with the ground. The width $w$ is equal to $\textbf {(A) } a \qquad \textbf {(B) } RQ \qquad \textbf {(C) } k \qquad \textbf {(D) } \frac{h+k}{2} \qquad \textbf {(E) } h$

2009 AMC 8, 20

How many non-congruent triangles have vertices at three of the eight points in the array shown below? [asy]dot((0,0)); dot((0,.5)); dot((.5,0)); dot((.5,.5)); dot((1,0)); dot((1,.5)); dot((1.5,0)); dot((1.5,.5));[/asy] $ \textbf{(A)}\ 5 \qquad \textbf{(B)}\ 6 \qquad \textbf{(C)}\ 7 \qquad \textbf{(D)}\ 8 \qquad \textbf{(E)}\ 9$

2008 Sharygin Geometry Olympiad, 1

(B.Frenkin) Does a convex quadrilateral without parallel sidelines exist such that it can be divided into four congruent triangles?

1987 Poland - Second Round, 2

Prove that the sum of the plane angles at each of the vertices of a given tetrahedron is $ 180^{\circ} $ if and only if all its faces are congruent.

Novosibirsk Oral Geo Oly VII, 2023.4

Inside the convex pentagon $ABCDE$, a point $O$ was chosen, and it turned out that all five triangles $AOB$, $BOC$, $COD$, $DOE$ and $EOA$ are congrunet to each other. Prove that these triangles are isosceles or right-angled.

1974 IMO Longlists, 18

Let $A_r,B_r, C_r$ be points on the circumference of a given circle $S$. From the triangle $A_rB_rC_r$, called $\Delta_r$, the triangle $\Delta_{r+1}$ is obtained by constructing the points $A_{r+1},B_{r+1}, C_{r+1} $on $S$ such that $A_{r+1}A_r$ is parallel to $B_rC_r$, $B_{r+1}B_r$ is parallel to $C_rA_r$, and $C_{r+1}C_r$ is parallel to $A_rB_r$. Each angle of $\Delta_1$ is an integer number of degrees and those integers are not multiples of $45$. Prove that at least two of the triangles $\Delta_1,\Delta_2, \ldots ,\Delta_{15}$ are congruent.

2012 Regional Olympiad of Mexico Center Zone, 3

In the parallelogram $ABCD$, $\angle BAD =60 ^ \circ$. Let $E $ be the intersection point of the diagonals. The circle circumscribed to the triangle $ACD$ intersects the line $AB$ at the point $K$ (different from $A$), the line $BD$ at the point $P$ (different from $D$), and to the line $BC$ in $L$ (different from $C$). The line $EP$ intersects the circumscribed circle of the triangle $CEL$ at the points $E$ and $M$. Show that the triangles $KLM$ and $CAP$ are congruent.

1992 AMC 8, 10

An isosceles right triangle with legs of length $8$ is partitioned into $16$ congruent triangles as shown. The shaded area is [asy] for (int a=0; a <= 3; ++a) { for (int b=0; b <= 3-a; ++b) { fill((a,b)--(a,b+1)--(a+1,b)--cycle,grey); } } for (int c=0; c <= 3; ++c) { draw((c,0)--(c,4-c),linewidth(1)); draw((0,c)--(4-c,c),linewidth(1)); draw((c+1,0)--(0,c+1),linewidth(1)); } label("$8$",(2,0),S); label("$8$",(0,2),W); [/asy] $\text{(A)}\ 10 \qquad \text{(B)}\ 20 \qquad \text{(C)}\ 32 \qquad \text{(D)}\ 40 \qquad \text{(E)}\ 64$

2006 AMC 12/AHSME, 16

Regular hexagon $ ABCDEF$ has vertices $ A$ and $ C$ at $ (0,0)$ and $ (7,1)$, respectively. What is its area? $ \textbf{(A) } 20\sqrt {3} \qquad \textbf{(B) } 22\sqrt {3} \qquad \textbf{(C) } 25\sqrt {3} \qquad \textbf{(D) } 27\sqrt {3} \qquad \textbf{(E) } 50$

2012 Sharygin Geometry Olympiad, 4

Given triangle $ABC$. Point $M$ is the midpoint of side $BC$, and point $P$ is the projection of $B$ to the perpendicular bisector of segment $AC$. Line $PM$ meets $AB$ in point $Q$. Prove that triangle $QPB$ is isosceles.

1991 Greece National Olympiad, 3

Prove that exists triangle that can be partitions in $2050$ congruent triangles.

2017 Balkan MO Shortlist, C2

Let $n,a,b,c$ be natural numbers. Every point on the coordinate plane with integer coordinates is colored in one of $n$ colors. Prove there exists $c$ triangles whose vertices are colored in the same color, which are pairwise congruent, and which have a side whose lenght is divisible by $a$ and a side whose lenght is divisible by $b$.

2017 Sharygin Geometry Olympiad, 4

Alex dissects a paper triangle into two triangles. Each minute after this he dissects one of obtained triangles into two triangles. After some time (at least one hour) it appeared that all obtained triangles were congruent. Find all initial triangles for which this is possible.

2006 Sharygin Geometry Olympiad, 7

The point $E$ is taken inside the square $ABCD$, the point $F$ is taken outside, so that the triangles $ABE$ and $BCF$ are congruent . Find the angles of the triangle $ABE$, if it is known that$EF$ is equal to the side of the square, and the angle $BFD$ is right.

1980 AMC 12/AHSME, 16

Four of the eight vertices of a cube are the vertices of a regular tetrahedron. Find the ratio of the surface area of the cube to the surface area of the tetrahedron. $\text{(A)} \ \sqrt 2 \qquad \text{(B)} \ \sqrt 3 \qquad \text{(C)} \ \sqrt{\frac{3}{2}} \qquad \text{(D)} \ \frac{2}{\sqrt{3}} \qquad \text{(E)} \ 2$

2016 Postal Coaching, 3

Four points lie on a plane such that no three of them are collinear. Consider the four triangles formed by taking any three points at a time. If the inradii of these four triangles are all equal, prove that the four triangles are congruent.

2020 Novosibirsk Oral Olympiad in Geometry, 7

The segments connecting the interior point of a convex non-sided $n$-gon with its vertices divide the $n$-gon into $n$ congruent triangles. For what is the smallest $n$ that is possible?

1983 IMO Longlists, 40

Four faces of tetrahedron $ABCD$ are congruent triangles whose angles form an arithmetic progression. If the lengths of the sides of the triangles are $a < b < c$, determine the radius of the sphere circumscribed about the tetrahedron as a function on $a, b$, and $c$. What is the ratio $c/a$ if $R = a \ ?$

2024 Czech and Slovak Olympiad III A, 6

Find all right triangles with integer side lengths in which two congruent circles with prime radius can be inscribed such that they are externally tangent, both touch the hypotenuse, and each is tangent to another leg of the right triangle.

2007 France Team Selection Test, 3

A point $D$ is chosen on the side $AC$ of a triangle $ABC$ with $\angle C < \angle A < 90^\circ$ in such a way that $BD=BA$. The incircle of $ABC$ is tangent to $AB$ and $AC$ at points $K$ and $L$, respectively. Let $J$ be the incenter of triangle $BCD$. Prove that the line $KL$ intersects the line segment $AJ$ at its midpoint.

1993 Brazil National Olympiad, 3

Given a circle and its center $O$, a point $A$ inside the circle and a distance $h$, construct a triangle $BAC$ with $\angle BAC = 90^\circ$, $B$ and $C$ on the circle and the altitude from $A$ length $h$.

2004 Tuymaada Olympiad, 3

An acute triangle $ABC$ is inscribed in a circle of radius 1 with centre $O;$ all the angles of $ABC$ are greater than $45^\circ.$ $B_{1}$ is the foot of perpendicular from $B$ to $CO,$ $B_{2}$ is the foot of perpendicular from $B_{1}$ to $AC.$ Similarly, $C_{1}$ is the foot of perpendicular from $C$ to $BO,$ $C_{2}$ is the foot of perpendicular from $C_{1}$ to $AB.$ The lines $B_{1}B_{2}$ and $C_{1}C_{2}$ intersect at $A_{3}.$ The points $B_{3}$ and $C_{3}$ are defined in the same way. Find the circumradius of triangle $A_{3}B_{3}C_{3}.$ [i]Proposed by F.Bakharev, F.Petrov[/i]

1989 China Team Selection Test, 4

Given triangle $ABC$, squares $ABEF, BCGH, CAIJ$ are constructed externally on side $AB, BC, CA$, respectively. Let $AH \cap BJ = P_1$, $BJ \cap CF = Q_1$, $CF \cap AH = R_1$, $AG \cap CE = P_2$, $BI \cap AG = Q_2$, $CE \cap BI = R_2$. Prove that triangle $P_1 Q_1 R_1$ is congruent to triangle $P_2 Q_2 R_2$.

2010 IFYM, Sozopol, 3

Let $ ABC$ is a triangle, let $ H$ is orthocenter of $ \triangle ABC$, let $ M$ is midpoint of $ BC$. Let $ (d)$ is a line perpendicular with $ HM$ at point $ H$. Let $ (d)$ meet $ AB, AC$ at $ E, F$ respectively. Prove that $ HE \equal{}HF$.

1989 China Team Selection Test, 4

Given triangle $ABC$, squares $ABEF, BCGH, CAIJ$ are constructed externally on side $AB, BC, CA$, respectively. Let $AH \cap BJ = P_1$, $BJ \cap CF = Q_1$, $CF \cap AH = R_1$, $AG \cap CE = P_2$, $BI \cap AG = Q_2$, $CE \cap BI = R_2$. Prove that triangle $P_1 Q_1 R_1$ is congruent to triangle $P_2 Q_2 R_2$.