Found problems: 107
2003 Indonesia MO, 6
The hall in a castle is a regular hexagon where its sides' length is 6 meters. The floor of the hall is to be tiled with equilateral triangular tiles where its sides' length is 50 centimeters. Each tile is divided into three congruent triangles by their altitudes up to its orthocenter (see below). Each of these small triangles are colored such that each tile has different colors and no two tiles have identical colorings. How many colors at least are required?
A tile's pattern is:
[asy]
draw((0,0.000)--(2,0.000));
draw((2,0.000)--(1,1.732));
draw((1,1.732)--(0,0.000));
draw((1,0.577)--(0,0.000));
draw((1,0.577)--(2,0.000));
draw((1,0.577)--(1,1.732));
[/asy]
2021 Israel TST, 3
Consider a triangle $ABC$ and two congruent triangles $A_1B_1C_1$ and $A_2B_2C_2$ which are respectively similar to $ABC$ and inscribed in it: $A_i,B_i,C_i$ are located on the sides of $ABC$ in such a way that the points $A_i$ are on the side opposite to $A$, the points $B_i$ are on the side opposite to $B$, and the points $C_i$ are on the side opposite to $C$ (and the angle at A are equal to angles at $A_i$ etc.).
The circumcircles of $A_1B_1C_1$ and $A_2B_2C_2$ intersect at points $P$ and $Q$. Prove that the line $PQ$ passes through the orthocenter of $ABC$.
Ukrainian TYM Qualifying - geometry, II.2
Is it true that when all the faces of a tetrahedron have the same area, they are congruent triangles?
2023 Irish Math Olympiad, P1
We are given a triangle $ABC$ such that $\angle BAC < 90^{\circ}$. The point $D$ is on the opposite side of the line $AB$ to $C$ such that $|AD| = |BD|$ and $\angle ADB = 90^{\circ}$. Similarly, the point $E$ is on the opposite side of $AC$ to $B$ such that $|AE| = |CE|$ and $\angle AEC = 90^{\circ}$. The point $X$ is such that $ADXE$ is a parallelogram.
Prove that $|BX| = |CX|$.
1999 Czech and Slovak Match, 3
Find all natural numbers $k$ for which there exists a set $M$ of ten real numbers such that there are exactly $k$ pairwise non-congruent triangles whose side lengths are three (not necessarily distinct) elements of $M$.
2012 Tournament of Towns, 5
Let $\ell$ be a tangent to the incircle of triangle $ABC$. Let $\ell_a,\ell_b$ and $\ell_c$ be the respective images of $\ell$ under reflection across the exterior bisector of $\angle A,\angle B$ and $\angle C$. Prove that the triangle formed by these lines is congruent to $ABC$.
Novosibirsk Oral Geo Oly VII, 2020.7
The segments connecting the interior point of a convex non-sided $n$-gon with its vertices divide the $n$-gon into $n$ congruent triangles. For what is the smallest $n$ that is possible?
2007 Sharygin Geometry Olympiad, 8
Three circles pass through a point $P$, and the second points of their intersection $A, B, C$ lie on a straight line. Let $A_1 B_1, C_1$ be the second meets of lines $AP, BP, CP$ with the corresponding circles. Let $C_2$ be the intersections of lines $AB_1$ and $BA_1$. Let $A_2, B_2$ be defined similarly. Prove that the triangles $A_1B_1C_1$ and $A_2B_2C_2$ are equal,
2006 IMO Shortlist, 4
A point $D$ is chosen on the side $AC$ of a triangle $ABC$ with $\angle C < \angle A < 90^\circ$ in such a way that $BD=BA$. The incircle of $ABC$ is tangent to $AB$ and $AC$ at points $K$ and $L$, respectively. Let $J$ be the incenter of triangle $BCD$. Prove that the line $KL$ intersects the line segment $AJ$ at its midpoint.
2014 Harvard-MIT Mathematics Tournament, 4
In quadrilateral $ABCD$, $\angle DAC = 98^{\circ}$, $\angle DBC = 82^\circ$, $\angle BCD = 70^\circ$, and $BC = AD$. Find $\angle ACD.$
2022 Durer Math Competition (First Round), 2
Determine all triangles that can be split into two congruent pieces by one cut. A cut consists of segments $P_1P_2$, $P_2P_3$, . . . , $P_{n-1}P_n$ where points $P_1, P_2, . . . , P_n$ are distinct, points $P_1$ and $P_n$ lie on the perimeter of the triangle and the rest of the points lie in the interior of the triangle such that the segments are disjoint except for the endpoints.
2009 China National Olympiad, 1
Given an acute triangle $ PBC$ with $ PB\neq PC.$ Points $ A,D$ lie on $ PB,PC,$ respectively. $ AC$ intersects $ BD$ at point $ O.$ Let $ E,F$ be the feet of perpendiculars from $ O$ to $ AB,CD,$ respectively. Denote by $ M,N$ the midpoints of $ BC,AD.$
$ (1)$: If four points $ A,B,C,D$ lie on one circle, then $ EM\cdot FN \equal{} EN\cdot FM.$
$ (2)$: Determine whether the converse of $ (1)$ is true or not, justify your answer.
1949-56 Chisinau City MO, 26
Formulate a criterion for the conguence of triangles by two medians and an altitude.
2023 Novosibirsk Oral Olympiad in Geometry, 4
Inside the convex pentagon $ABCDE$, a point $O$ was chosen, and it turned out that all five triangles $AOB$, $BOC$, $COD$, $DOE$ and $EOA$ are congrunet to each other. Prove that these triangles are isosceles or right-angled.
1986 China Team Selection Test, 1
Given a square $ABCD$ whose side length is $1$, $P$ and $Q$ are points on the sides $AB$ and $AD$. If the perimeter of $APQ$ is $2$ find the angle $PCQ$.
2007 Sharygin Geometry Olympiad, 3
The diagonals of a convex quadrilateral dissect it into four similar triangles.
Prove that this quadrilateral can also be dissected into two congruent triangles.
2006 AMC 10, 17
In rectangle $ ADEH$, points $ B$ and $ C$ trisect $ \overline{AD}$, and points $ G$ and $ F$ trisect $ \overline{HE}$. In addition, $ AH \equal{} AC \equal{} 2.$ What is the area of quadrilateral $ WXYZ$ shown in the figure?
[asy]defaultpen(linewidth(0.7));pointpen=black; pathpen=black;
size(7cm);
pair A,B,C,D,E,F,G,H,W,X,Y,Z;
A=(0,2); B=(1,2); C=(2,2); D=(3,2);
H=(0,0); G=(1,0); F=(2,0); E=(3,0);
D('A',A, N); D('B',B,N); D('C',C,N); D('D',D,N); D('E',E,NE); D('F',F,NE); D('G',G,NW); D('H',H,NW);
D(A--F); D(B--E); D(D--G); D(C--H);
Z=IP(A--F, C--H); Y=IP(A--F, D--G); X=IP(B--E,D--G); W=IP(B--E,C--H);
D('W',W,N); D('X',X,plain.E); D('Y',Y,S); D('Z',Z,plain.W);
D(A--D--E--H--cycle);[/asy]
$ \textbf{(A) } \frac 12 \qquad \textbf{(B) } \frac {\sqrt {2}}2\qquad \textbf{(C) } \frac {\sqrt {3}}2 \qquad \textbf{(D) } \frac {2\sqrt {2}}3 \qquad \textbf{(E) } \frac {2\sqrt {3}}3$
2012 Online Math Open Problems, 31
Let $ABC$ be a triangle inscribed in circle $\Gamma$, centered at $O$ with radius $333.$ Let $M$ be the midpoint of $AB$, $N$ be the midpoint of $AC$, and $D$ be the point where line $AO$ intersects $BC$. Given that lines $MN$ and $BO$ concur on $\Gamma$ and that $BC = 665$, find the length of segment $AD$.
[i]Author: Alex Zhu[/i]
2019 AIME Problems, 1
Points $C\neq D$ lie on the same side of line $AB$ so that $\triangle ABC$ and $\triangle BAD$ are congruent with $AB = 9$, $BC=AD=10$, and $CA=DB=17$. The intersection of these two triangular regions has area $\tfrac mn$, where $m$ and $n$ are relatively prime positive integers. Find $m+n$.
1971 IMO Shortlist, 12
Two congruent equilateral triangles $ABC$ and $A'B'C'$ in the plane are given. Show that the midpoints of the segments $AA',BB', CC'$ either are collinear or form an equilateral triangle.
2018 China Second Round Olympiad, 2
In triangle $\triangle ABC$, $AB<AC$, $M,D,E$ are the midpoints of $BC$, the arcs $BAC$ and $BC$ of the circumcircle of $\triangle ABC$ respectively. The incircle of $\triangle ABC$ touches $AB$ at $F$, $AE$ meets $BC$ at $G$, and the perpendicular to $AB$ at $B$ meets segment $EF$ at $N$. If $BN=EM$, prove that $DF$ is perpendicular to $FG$.
1999 Chile National Olympiad, 6
Prove that there are infinite pairs of non-congruent triangles that have the same angles and two of their equal sides. Develop an algorithm or rule to obtain these pairs of triangles and indicate at least one pair that satisfies the asserted.
2003 AMC 10, 7
How many non-congruent triangles with perimeter $ 7$ have integer side lengths?
$ \textbf{(A)}\ 1 \qquad
\textbf{(B)}\ 2 \qquad
\textbf{(C)}\ 3 \qquad
\textbf{(D)}\ 4 \qquad
\textbf{(E)}\ 5$
2001 India Regional Mathematical Olympiad, 5
In a triangle $ABC$, $D$ is a point on $BC$ such that $AD$ is the internal bisector of $\angle A$. Suppose $\angle B = 2 \angle C$ and $CD =AB$. prove that $\angle A = 72^{\circ}$.
2005 Harvard-MIT Mathematics Tournament, 4
Let $XYZ$ be a triangle with $ \angle X = 60^\circ $ and $ \angle Y = 45^\circ $. A circle with center $P$ passes through points $A$ and $B$ on side $XY$, $C$ and $D$ on side $YZ$, and $E$ and $F$ on side $ZX$. Suppose $AB=CD=EF$. Find $ \angle XPY $ in degrees.