This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 297

1964 Dutch Mathematical Olympiad, 1

Given a triangle $ABC$, $\angle C= 60^o$. Construct a point $P$ on the side $AC$ and a point $Q$ on side $BC$ such that $ABQP$ is a trapezoid whose diagonals make an angle of $60^o$ with each other.

1964 Polish MO Finals, 5

Given an acute angle and a circle inside the angle. Find a point $ M $ on the circle such that the sum of the distances of the point $ M $ from the sides of the angle is a minimum.

1959 IMO Shortlist, 4

Construct a right triangle with given hypotenuse $c$ such that the median drawn to the hypotenuse is the geometric mean of the two legs of the triangle.

2021 India National Olympiad, 3

Betal marks $2021$ points on the plane such that no three are collinear, and draws all possible segments joining these. He then chooses any $1011$ of these segments, and marks their midpoints. Finally, he chooses a segment whose midpoint is not marked yet, and challenges Vikram to construct its midpoint using [b]only[/b] a straightedge. Can Vikram always complete this challenge? [i]Note.[/i] A straightedge is an infinitely long ruler without markings, which can only be used to draw the line joining any two given distinct points. [i]Proposed by Prithwijit De and Sutanay Bhattacharya[/i]

Russian TST 2022, P2

Let $r>1$ be a rational number. Alice plays a solitaire game on a number line. Initially there is a red bead at $0$ and a blue bead at $1$. In a move, Alice chooses one of the beads and an integer $k \in \mathbb{Z}$. If the chosen bead is at $x$, and the other bead is at $y$, then the bead at $x$ is moved to the point $x'$ satisfying $x'-y=r^k(x-y)$. Find all $r$ for which Alice can move the red bead to $1$ in at most $2021$ moves.

1982 Spain Mathematical Olympiad, 5

Construct a square knowing the sum of the diagonal and the side.

2022 Thailand TST, 1

Let $r>1$ be a rational number. Alice plays a solitaire game on a number line. Initially there is a red bead at $0$ and a blue bead at $1$. In a move, Alice chooses one of the beads and an integer $k \in \mathbb{Z}$. If the chosen bead is at $x$, and the other bead is at $y$, then the bead at $x$ is moved to the point $x'$ satisfying $x'-y=r^k(x-y)$. Find all $r$ for which Alice can move the red bead to $1$ in at most $2021$ moves.

I Soros Olympiad 1994-95 (Rus + Ukr), 9.4

Use a compass and a ruler to construct a triangle, given the intersection point of its median, the orthocenter, and one from the vertices.

1960 Czech and Slovak Olympiad III A, 3

Two different points $A, M$ are given in a plane, $AM = d > 0$. Let a number $v > 0$ be given. Construct a rhombus $ABCD$ with the height of length $v$ and $M$ being a midpoint of $BC$. Discuss conditions of solvability and determine number of solutions. Can the resulting quadrilateral $ABCD$ be a square?

2024 Baltic Way, 19

Does there exist a positive integer $N$ which is divisible by at least $2024$ distinct primes and whose positive divisors $1 = d_1 < d_2 < \ldots < d_k = N$ are such that the number \[ \frac{d_2}{d_1}+\frac{d_3}{d_2}+\ldots+\frac{d_k}{d_{k-1}} \] is an integer?

2003 Oral Moscow Geometry Olympiad, 1

Construct a triangle given an angle, the side opposite the angle and the median to the other side (researching the number of solutions is not required).

2020 Indonesia MO, 5

A set $A$ contains exactly $n$ integers, each of which is greater than $1$ and every of their prime factors is less than $10$. Determine the smallest $n$ such that $A$ must contain at least two distinct elements $a$ and $b$ such that $ab$ is the square of an integer.

2024 Kyiv City MO Round 2, Problem 3

$2024$ ones and $2024$ twos are arranged in a circle in some order. Is it always possible to divide the circle into [b]a)[/b] two (contiguous) parts with equal sums? [b]b)[/b] three (contiguous) parts with equal sums? [i]Proposed by Fedir Yudin[/i]

2021 Sharygin Geometry Olympiad, 9.7

Three sidelines of on acute-angled triangle are drawn on the plane. Fyodor wants to draw the altitudes of this triangle using a ruler and a compass. Ivan obstructs him using an eraser. For each move Fyodor may draw one line through two markeed points or one circle centered at a marked point and passing through another marked point. After this Fyodor may mark an arbitrary number of points (the common points of drawn lines, arbitrary points on the drawn lines or arbitrary points on the plane). For each move Ivan erases at most three of marked point. (Fyodor may not use the erased points in his constructions but he may mark them for the second time). They move by turns, Fydors begins. Initially no points are marked. Can Fyodor draw the altitudes?

2018 Yasinsky Geometry Olympiad, 3

Point $O$ is the center of circumcircle $\omega$ of the isosceles triangle $ABC$ ($AB = AC$). Bisector of the angle $\angle C$ intersects $\omega$ at the point $W$. Point $Q$ is the center of the circumcircle of the triangle $OWB$. Construct the triangle $ABC$ given the points $Q,W, B$. (Andrey Mostovy)

1968 Dutch Mathematical Olympiad, 4

Given is a triangle $ABC$. A line $\ell$ passes through reflection wrt $BC$ changes into the line $\ell'$, $\ell'$ changes into $\ell''$ through reflection wrt $AC$ and $\ell''$ through reflection wrt $AB$ changes into $\ell'''$. Construct the line $\ell$ given that $\ell'''$ coincides with $\ell$.

Ukrainian TYM Qualifying - geometry, 2015.21

Let $CH$ be the altitude of the triangle $ABC$ drawn on the board, in which $\angle C = 90^o$, $CA \ne CB$. The mathematics teacher drew the perpendicular bisectors of segments$ CA$ and $CB$, which cut the line CH at points $K$ and $M$, respectively, and then erased the drawing, leaving only the points $C, K$ and $M$ on the board. Restore triangle $ABC$, using only a compass and a ruler.

1984 Spain Mathematical Olympiad, 1

At a position $O$ of an airport in a plateau there is a gun which can rotate arbitrarily. Two tanks moving along two given segments $AB$ and $CD$ attack the airport. Determine, by a ruler and a compass, the reach of the gun, knowing that the total length of the parts of the trajectories of the two tanks reachable by the gun is equal to a given length $\ell$.

2003 Poland - Second Round, 5

Point $A$ lies outside circle $o$ of center $O$. From point $A$ draw two lines tangent to a circle $o$ in points $B$ and $C$. A tangent to a circle $o$ cuts segments $AB$ and $AC$ in points $E$ and $F$, respectively. Lines $OE$ and $OF$ cut segment $BC$ in points $P$ and $Q$, respectively. Prove that from line segments $BP$, $PQ$, $QC$ can construct triangle similar to triangle $AEF$.

1960 IMO Shortlist, 4

Construct triangle $ABC$, given $h_a$, $h_b$ (the altitudes from $A$ and $B$), and $m_a$, the median from vertex $A$.

2017 Yasinsky Geometry Olympiad, 4

Three points are given on the plane. With the help of compass and ruler construct a straight line in this plane, which will be equidistant from these three points. Explore how many solutions have this construction.

1958 Czech and Slovak Olympiad III A, 2

Construct a triangle $ABC$ given the magnitude of the angle $BCA$ and lengths of height $h_c$ and median $m_c$. Discuss conditions of solvability.

1977 Czech and Slovak Olympiad III A, 2

The numbers $p,q>0$ are given. Construct a rectangle $ABCD$ with $AE=p,AF=q$ where $E,F$ are midpoints of $BC,CD,$ respectively. Discuss conditions of solvability.

2025 International Zhautykov Olympiad, 3

A pair of positive integers $(x, y)$ is [i] good [/i] if they satisfy $\text{rad}(x) = \text{rad}(y)$ and they do not divide each-other. Given coprime positive integers $a$ and $b$, show that there exist infinitely many $n$ for which there exists a positive integer $m$ such that $(a^n + bm, b^n + am)$ is [i] good[/i]. (Here, $\text{rad}(x)$ denotes the product of $x$'s prime divisors, as usual.)

2001 Grosman Memorial Mathematical Olympiad, 5

Triangle $ABC$ in the plane $\Pi$ is called [i]good [/i] if it has the following property: For any point $D$ in space outside the plane $\Pi$, it is possible to construct a triangle with sides of lengths $CD,BD,AD$. Find all good triangles