This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 297

Geometry Mathley 2011-12, 6.2

Let $ABC$ be an acute triangle, and its altitudes $AX,BY,CZ$ concurrent at $H$. Construct circles $(K_a), (K_b), (K_c)$ circumscribing the triangles $AY Z, BZX, CXY$ . Construct a circle $(K)$ that is internally tangent to all the three circles $(Ka), (K_b), (K_c)$. Prove that $(K)$ is tangent to the circumcircle $(O)$ of the triangle $ABC$. Đỗ Thanh Sơn

III Soros Olympiad 1996 - 97 (Russia), 10.5

A circle is drawn on a plane, the center of which is not indicated. On this circle, point $A$ is marked and a second circle with center at $A$ is constructed. The second circle has a radius greater than the radius of the first and intersects the first at two points. Construct the center of the first circle using only a compass, drawing no more than five more circles.

2020 Tuymaada Olympiad, 5

Coordinate axes (without any marks, with the same scale) and the graph of a quadratic trinomial $y = x^2 + ax + b$ are drawn in the plane. The numbers $a$ and $b$ are not known. How to draw a unit segment using only ruler and compass?

2021 Oral Moscow Geometry Olympiad, 2

A trapezoid is given in which one base is twice as large as the other. Use one ruler (no divisions) to draw the midline of this trapezoid.

1994 Tournament Of Towns, (399) 1

Construct a convex quadrilateral given the lengths of all its sides and the length of the segment between the midpoints of its diagonals. (Folklore)

1958 Poland - Second Round, 6

In a plane, two circles $ C_1 $ and $ C_2 $ and a line $ m $ are given. Find a point on the line $ m $ from which one can draw tangents to the circles $ C_1 $ and $ C_2 $ with equal inclination to the line $ m $.

2007 Sharygin Geometry Olympiad, 5

Reconstruct a triangle, given the incenter, the midpoint of some side and the foot of the altitude drawn on this side.

2022 Caucasus Mathematical Olympiad, 2

Prove that infinitely many positive integers can be represented as $(a-1)/b + (b-1)/c + (c-1)/a$, where $a$, $b$ and $c$ are pairwise distinct positive integers greater than 1.

2013 Sharygin Geometry Olympiad, 4

The diagonals of a convex quadrilateral $ABCD$ meet at point $L$. The orthocenter $H$ of the triangle $LAB$ and the circumcenters $O_1, O_2$, and $O_3$ of the triangles $LBC, LCD$, and $LDA$ were marked. Then the whole configuration except for points $H, O_1, O_2$, and $O_3$ was erased. Restore it using a compass and a ruler.

2012 Sharygin Geometry Olympiad, 3

In triangle $ABC$, the bisector $CL$ was drawn. The incircles of triangles $CAL$ and $CBL$ touch $AB$ at points $M$ and $N$ respectively. Points $M$ and $N$ are marked on the picture, and then the whole picture except the points $A, L, M$, and $N$ is erased. Restore the triangle using a compass and a ruler. (V.Protasov)

1928 Eotvos Mathematical Competition, 3

Let $\ell$ be a given line, $A$ and $B$ given points of the plane. Choose a point $P$ on $\ell $ so that the longer of the segments $AP$, $BP$ is as short as possible. (If $AP = BP,$ either segment may be taken as the longer one.)

2017 Sharygin Geometry Olympiad, P17

Using a compass and a ruler, construct a point $K$ inside an acute-angled triangle $ABC$ so that $\angle KBA = 2\angle KAB$ and $ \angle KBC = 2\angle KCB$.

1983 Bundeswettbewerb Mathematik, 2

The radii of the circumcircle and the incircle of a right triangle are given. Cconstruct that triangle with compass and ruler, describe the construction and justify why it is correct.

Kyiv City MO Seniors 2003+ geometry, 2011.10.3

A trapezoid $ABCD$ with bases $BC = a$ and $AD = 2a$ is drawn on the plane. Using only with a ruler, construct a triangle whose area is equal to the area of the trapezoid. With the help of a ruler you can draw straight lines through two known points. (Rozhkova Maria)

1997 Belarusian National Olympiad, 4

A triangle $A_1B_1C_1$ is a parallel projection of a triangle $ABC$ in space. The parallel projections $A_1H_1$ and $C_1L_1$ of the altitude $AH$ and the bisector $CL$ of $\vartriangle ABC$ respectively are drawn. Using a ruler and compass, construct a parallel projection of : (a) the orthocenter, (b) the incenter of $\vartriangle ABC$.

2019 ELMO Problems, 2

Tags: construction
Let $m, n \ge 2$ be integers. Carl is given $n$ marked points in the plane and wishes to mark their centroid.* He has no standard compass or straightedge. Instead, he has a device which, given marked points $A$ and $B$, marks the $m-1$ points that divide segment $\overline{AB}$ into $m$ congruent parts (but does not draw the segment). For which pairs $(m,n)$ can Carl necessarily accomplish his task, regardless of which $n$ points he is given? *Here, the [i]centroid[/i] of $n$ points with coordinates $(x_1, y_1), \dots, (x_n, y_n)$ is the point with coordinates $\left( \frac{x_1 + \dots + x_n}{n}, \frac{y_1 + \dots + y_n}{n}\right)$. [i]Proposed by Holden Mui and Carl Schildkraut[/i]

1965 Czech and Slovak Olympiad III A, 2

Line segment $AM=d>0$ is given in the plane. Furthermore, a positive number $v$ is given. Construct a right triangle $ABC$ with hypotenuse $AB$, altitude to the hypotenuse of the length $v$ and the leg $BC$ being divided by $M$ in ration $MB/MC=2/3$. Discuss conditions of solvability in terms of $d, v$.

2023 4th Memorial "Aleksandar Blazhevski-Cane", P1

Let $n$ be a fixed positive integer and fix a point $O$ in the plane. There are $n$ lines drawn passing through the point $O$. Determine the largest $k$ (depending on $n$) such that we can always color $k$ of the $n$ lines red in such a way that no two red lines are perpendicular to each other. [i]Proposed by Nikola Velov[/i]

2025 Bangladesh Mathematical Olympiad, P9

Suppose there are several juice boxes, one of which is poisoned. You have $n$ guinea pigs to test the boxes. The testing happens in the following way: [list] [*] At each round, you can have the guinea pigs taste any number of juice boxes. [*] Conversely, a juice box can be tasted by any number of guinea pigs. [*] After the round ends, any guinea pigs who tasted the poisoned juice die. [/list] Suppose you have to find the poisoned juice box in at most $k$ rounds. What is the maximum number of juice boxes such that it is possible?

2011 Sharygin Geometry Olympiad, 8

Using only the ruler, divide the side of a square table into $n$ equal parts. All lines drawn must lie on the surface of the table.

1972 Czech and Slovak Olympiad III A, 6

Two different points $A,S$ are given in the plane. Furthermore, positive numbers $d,\omega$ are given, $\omega<180^\circ.$ Let $X$ be a point and $X'$ its image under the rotation by the angle $\omega$ (in counter-clockwise direction) with respect to the origin $S.$ Construct all points $X$ such that $XX'=d$ and $A$ is a point of the segment $XX'.$ Discuss conditions of solvability (in terms of $d,\omega,SA$).

1952 Polish MO Finals, 3

Construct the quadrilateral $ ABCD $ given the lengths of the sides $ AB $ and $ CD $ and the angles of the quadrilateral.

Ukrainian TYM Qualifying - geometry, 2016.14

Using only a compass and a ruler, reconstruct triangle $ABC$ given the following three points: point $M$ the intersection of its medians, point $I$ is the center of its inscribed circle and the point $Q_a$ is touch point of the inscribed circle to side $BC$.

2001 Czech And Slovak Olympiad IIIA, 2

Given a triangle $PQX$ in the plane, with $PQ = 3, PX = 2.6$ and $QX = 3.8$. Construct a right-angled triangle $ABC$ such that the incircle of $\vartriangle ABC$ touches $AB$ at $P$ and $BC$ at $Q$, and point $X$ lies on the line $AC$.

2006 Sharygin Geometry Olympiad, 6

a) Given a segment $AB$ with a point $C$ inside it, which is the chord of a circle of radius $R$. Inscribe in the formed segment a circle tangent to point $C$ and to the circle of radius $R$. b) Given a segment $AB$ with a point $C$ inside it, which is the point of tangency of a circle of radius $r$. Draw through $A$ and $B$ a circle tangent to a circle of radius $r$.