This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 45

Estonia Open Senior - geometry, 1998.2.5

The plane has a semicircle with center $O$ and diameter $AB$. Chord $CD$ is parallel to the diameter $AB$ and $\angle AOC = \angle DOB = \frac{7}{16}$ (radians). Which of the two parts it divides into a semicircle is larger area?

2012 Swedish Mathematical Competition, 6

A circle is inscribed in an trapezoid. Show that the diagonals of the trapezoid intersect at a point on the diameter of the circle perpendicular to the two parallel sides.

1999 Tournament Of Towns, 4

$n$ diameters divide a disk into $2n$ equal sectors. $n$ of the sectors are coloured blue , and the other $n$ are coloured red (in arbitrary order) . Blue sectors are numbered from $1$ to $n$ in the anticlockwise direction, starting from an arbitrary blue sector, and red sectors are numbered from $1$ to $n$ in the clockwise direction, starting from an arbitrary red sector. Prove that there is a semi-disk containing sectors with all numbers from $1$ to $n$. (V Proizvolov)

2012 Bundeswettbewerb Mathematik, 3

The incircle of the triangle $ABC$ touches the sides $BC, CA$ and $AB$ in points $A_1, B_1$ and $C_1$ respectively. $C_1D$ is a diameter of the incircle. Finally, let $E$ be the intersection of the lines $B_1C_1$ and $A_1D$. Prove that the segments $CE$ and $CB_1$ have equal length.

2019 Oral Moscow Geometry Olympiad, 1

In the triangle $ABC, I$ is the center of the inscribed circle, point $M$ lies on the side of $BC$, with $\angle BIM = 90^o$. Prove that the distance from point $M$ to line $AB$ is equal to the diameter of the circle inscribed in triangle $ABC$

1958 November Putnam, B3

Tags: square , diameter
Show that if a unit square is partitioned into two sets, then the diameter (least upper bound of the distances between pairs of points) of one of the sets is not less than $\sqrt{5} \slash 2.$ Show also that no larger number will do.

2015 Swedish Mathematical Competition, 1

Given the acute triangle $ABC$. A diameter of the circumscribed circle of the triangle intersects the sides $AC$ and $BC$, dividing the side $BC$ in half. Show that the same diameter divides the side $AC$ in a ratio of $1: 3$, calculated from $A$, if and only if $\tan B = 2 \tan C$.

2019 Nigeria Senior MO Round 2, 3

Circles $\Omega_a$ and $\Omega_b$ are externally tangent at $D$, circles $\Omega_b$ and $\Omega_c$ are externally tangent at $E$, circles $\Omega_a$ and $\Omega_c$ are externally tangent at $F$. Let $P$ be an arbitrary point on $\Omega_a$ different from $D$ and $F$. Extend $PD$ to meet $\Omega_b$ again at $B$, extend $BE$ to meet $\Omega_c$ again at $C$ and extend $CF$ to meet $\Omega_a$ again at $A$. Show that $PA$ is a diameter of circle $\Omega_a$.

2014 Rioplatense Mathematical Olympiad, Level 3, 5

In the segment $A C$ a point $B$ is taken. Construct circles $T_1, T_2$ and $T_3$ of diameters $A B, BC$ and $AC$ respectively. A line that passes through $B$ cuts $T_3$ in the points $P$ and $Q$, and the circles $T_1$ and $T_2$ respectively at points $R$ and $S$. Prove that $PR = Q S$.

2019 Swedish Mathematical Competition, 2

Segment $AB$ is the diameter of a circle. Points $C$ and $D$ lie on the circle. The rays $AC$ and $AD$ intersect the tangent to the circle at point $B$ at points $P$ and $Q$, respectively. Show that points $C, D, P$ and $Q$ lie on a circle.

2020 Bundeswettbewerb Mathematik, 3

Let $AB$ be the diameter of a circle $k$ and let $E$ be a point in the interior of $k$. The line $AE$ intersects $k$ a second time in $C \ne A$ and the line $BE$ intersects $k$ a second time in $D \ne B$. Show that the value of $AC \cdot AE+BD\cdot BE$ is independent of the choice of $E$.

2011 NZMOC Camp Selection Problems, 2

Tags: diameter , geometry
Let an acute angled triangle $ABC$ be given. Prove that the circles whose diameters are $AB$ and $AC$ have a point of intersection on $BC$.

1970 Vietnam National Olympiad, 4

$AB$ and $CD$ are perpendicular diameters of a circle. $L$ is the tangent to the circle at $A$. $M$ is a variable point on the minor arc $AC$. The ray $BM, DM$ meet the line $L$ at $P$ and $Q$ respectively. Show that $AP\cdot AQ = AB\cdot PQ$. Show how to construct the point $M$ which gives$ BQ$ parallel to $DP$. If the lines $OP$ and $BQ$ meet at $N$ find the locus of $N$. The lines $BP$ and $BQ$ meet the tangent at $D$ at $P'$ and $Q'$ respectively. Find the relation between $P'$ and $Q$'. The lines $D$P and $DQ$ meet the line $BC$ at $P"$ and $Q"$ respectively. Find the relation between $P"$ and $Q"$.

1984 IMO Longlists, 50

Let $ABCD$ be a convex quadrilateral with the line $CD$ being tangent to the circle on diameter $AB$. Prove that the line $AB$ is tangent to the circle on diameter $CD$ if and only if the lines $BC$ and $AD$ are parallel.

Kyiv City MO Seniors Round2 2010+ geometry, 2017.10.3

Circles $w_1$ and $w_2$ with centers at points $O_1$ and $O_2$ respectively, intersect at points $A$ and $B$. A line passing through point $B$, intersects the circles $w_1$ and $w_2$ at points $C$ and $D$ other than $B$. Tangents to the circles $w_1$ and $w_2$ at points $C$ and $D$ intersect at point $E$. Line $EA$ intersects the circumscribed circle $w$ of triangle $AO_1O_2$ at point $F$. Prove that the length of the segment is $EF$ is equal to the diameter of the circle $w$. (Vovchenko V., Plotnikov M.)

2016 Romanian Master of Mathematics Shortlist, G1

Two circles, $\omega_1$ and $\omega_2$, centred at $O_1$ and $O_2$, respectively, meet at points $A$ and $B$. A line through $B$ meets $\omega_1$ again at $C$, and $\omega_2$ again at $D$. The tangents to $\omega_1$ and $\omega_2$ at $C$ and $D$, respectively, meet at $E$, and the line $AE$ meets the circle $\omega$ through $A, O_1, O_2$ again at $F$. Prove that the length of the segment $EF$ is equal to the diameter of $\omega$.

2005 Oral Moscow Geometry Olympiad, 2

On a circle with diameter $AB$, lie points $C$ and $D$. $XY$ is the diameter passing through the midpoint $K$ of the chord $CD$. Point $M$ is the projection of point $X$ onto line $AC$, and point $N$ is the projection of point $Y$ on line $BD$. Prove that points $M, N$ and $K$ are collinear. (A. Zaslavsky)

1936 Moscow Mathematical Olympiad, 025

Consider a circle and a point $P$ outside the circle. The angle of given measure with vertex at $P$ subtends a diameter of the circle. Construct the circle’s diameter with ruler and compass.

2022 Indonesia TST, G

Let $AB$ be the diameter of circle $\Gamma$ centred at $O$. Point $C$ lies on ray $\overrightarrow{AB}$. The line through $C$ cuts circle $\Gamma$ at $D$ and $E$, with point $D$ being closer to $C$ than $E$ is. $OF$ is the diameter of the circumcircle of triangle $BOD$. Next, construct $CF$, cutting the circumcircle of triangle $BOD$ at $G$. Prove that $O,A,E,G$ are concyclic. (Possibly proposed by Pak Wono)

2005 Bosnia and Herzegovina Team Selection Test, 4

On the line which contains diameter $PQ$ of circle $k(S,r)$, point $A$ is chosen outside the circle such that tangent $t$ from point $A$ touches the circle in point $T$. Tangents on circle $k$ in points $P$ and $Q$ are $p$ and $q$, respectively. If $PT \cap q={N}$ and $QT \cap p={M}$, prove that points $A$, $M$ and $N$ are collinear.