Found problems: 509
Indonesia MO Shortlist - geometry, g4
Given an isosceles triangle $ABC$ with $AB = AC$, suppose $D$ is the midpoint of the $AC$. The circumcircle of the $DBC$ triangle intersects the altitude from $A$ at point $E$ inside the triangle $ABC$, and the circumcircle of the triangle $AEB$ cuts the side $BD$ at point $F$. If $CF$ cuts $AE$ at point $G$, prove that $AE = EG$.
Kharkiv City MO Seniors - geometry, 2018.10.4
On the sides $AB, AC ,BC$ of the triangle $ABC$, the points $M, N, K$ are selected, respectively, such that $AM = AN$ and $BM = BK$. The circle circumscribed around the triangle $MNK$ intersects the segments $AB$ and $BC$ for the second time at points $P$ and $Q$, respectively. Lines $MN$ and $PQ$ intersect at point $T$. Prove that the line $CT$ bisects the segment $MP$.
2022 Austrian MO Beginners' Competition, 3
A semicircle is erected over the segment $AB$ with center $M$. Let $P$ be one point different from $A$ and $B$ on the semicircle and $Q$ the midpoint of the arc of the circle $AP$. The point of intersection of the straight line $BP$ with the parallel to $P Q$ through $M$ is $S$. Prove that $PM = PS$ holds.
[i](Karl Czakler)[/i]
2023 Yasinsky Geometry Olympiad, 4
Let $C$ be one of the two points of intersection of circles $\omega_1$ and $\omega_2$ with centers at points $O_1$ and $O_2$, respectively. The line $O_1O_2$ intersects the circles at points $A$ and $B$ as shown in the figure. Let $K$ be the second point of intersection of line $AC$ with circle $\omega_2$, $L$ be the second point of intersection of line $BC$ with circle $\omega_1$. Lines $AL$ and $BK$ intersect at point $D$. Prove that $AD=BD$.
(Yurii Biletskyi)
[img]https://cdn.artofproblemsolving.com/attachments/6/4/2cdccb43743fcfcb155e846a0e05ec79ba90e4.png[/img]
1995 Tournament Of Towns, (458) 3
The non-parallel sides of a trapezium serve as the diameters of two circles. Prove that all four tangents to the circles drawn from the point of intersection of the diagonals are equal (if this point lies outside the circles).
(S Markelov)
2008 Abels Math Contest (Norwegian MO) Final, 4b
A point $D$ lies on the side $BC$ , and a point $E$ on the side $AC$ , of the triangle $ABC$ , and $BD$ and $AE$ have the same length. The line through the centres of the circumscribed circles of the triangles $ADC$ and $BEC$ crosses $AC$ in $K$ and $BC$ in $L$. Show that $KC$ and $LC$ have the same length.
2015 Puerto Rico Team Selection Test, 2
In the triangle $ABC$, let $P$, $Q$, and $R$ lie on the sides $BC$, $AC$, and $AB$ respectively, such that $AQ = AR$, $BP = BR$ and $CP = CQ$. Let $\angle PQR=75^o$ and $\angle PRQ=35^o$. Calculate the measures of the angles of the triangle $ABC$.
Novosibirsk Oral Geo Oly VII, 2021.5
In an acute-angled triangle $ABC$ on the side $AC$, point $P$ is chosen in such a way that $2AP = BC$. Points $X$ and $Y$ are symmetric to $P$ with respect to vertices $A$ and $C$, respectively. It turned out that $BX = BY$. Find $\angle BCA$.
Novosibirsk Oral Geo Oly IX, 2020.3
Point $P$ is chosen inside triangle $ABC$ so that $\angle APC+\angle ABC=180^o$ and $BC=AP.$ On the side $AB$, a point $K$ is chosen such that $AK = KB + PC$. Prove that $CK \perp AB$.
2012 Estonia Team Selection Test, 4
Let $ABC$ be a triangle where $|AB| = |AC|$. Points $P$ and $Q$ are different from the vertices of the triangle and lie on the sides $AB$ and $AC$, respectively. Prove that the circumcircle of the triangle $APQ$ passes through the circumcenter of $ABC$ if and only if $|AP| = |CQ|$.
1957 Polish MO Finals, 1
Through the midpoint $ S $ of the segment $ MN $ with endpoints lying on the legs of an isosceles triangle, a straight line is drawn parallel to the base of the triangle, intersecting its legs at points $ K $ and $ L $. Prove that the orthogonal projection of the segment $ MN $ onto the base of the triangle is equal to the segment $ KL $.
2021 Poland - Second Round, 2
The point P lies on the side $CD$ of the parallelogram $ABCD$ with $\angle DBA = \angle CBP$. Point $O$ is the center of the circle passing through the points $D$ and $P$ and tangent to the straight line $AD$ at point $D$. Prove that $AO = OC$.
Ukraine Correspondence MO - geometry, 2012.10
The diagonals $AC$ and $BD$ of the cyclic quadrilateral $ABCD$ intersect at a point O. It is known that $\angle BAD = 60^o$ and $AO = 3OC$. Prove that the sum of some two sides of a quadrilateral is equal to the sum of the other two sides.
2020 Federal Competition For Advanced Students, P1, 2
Let $ABC$ be a right triangle with a right angle in $C$ and a circumcenter $U$. On the sides $AC$ and $BC$, the points $D$ and $E$ lie in such a way that $\angle EUD = 90 ^o$. Let $F$ and $G$ be the projection of $D$ and $E$ on $AB$, respectively. Prove that $FG$ is half as long as $AB$.
(Walther Janous)
2019 Switzerland - Final Round, 7
Let $ABC$ be a triangle with $\angle CAB = 2 \angle ABC$. Assume that a point $D$ is inside the triangle $ABC$ exists such that $AD = BD$ and $CD = AC$. Show that $\angle ACB = 3 \angle DCB$.
2010 Junior Balkan Team Selection Tests - Romania, 4
Let $ABC$ be an isosceles triangle with $AB = AC$ and let $n$ be a natural number, $n>1$. On the side $AB$ we consider the point $M$ such that $n \cdot AM = AB$. On the side $BC$ we consider the points $P_1, P_2, ....., P_ {n-1}$ such that $BP_1 = P_1P_2 = .... = P_ {n-1} C = \frac{1}{n} BC$.
Show that: $\angle {MP_1A} + \angle {MP_2A} + .... + \angle {MP_ {n-1} A} = \frac{1} {2} \angle {BAC}$.
2011 Indonesia TST, 3
Let $\Gamma$ is a circle with diameter $AB$. Let $\ell$ be the tangent of $\Gamma$ at $A$, and $m$ be the tangent of $\Gamma$ through $B$. Let $C$ be a point on $\ell$, $C \ne A$, and let $q_1$ and $q_2$ be two lines that passes through $C$. If $q_i$ cuts $\Gamma$ at $D_i$ and $E_i$ ($D_i$ is located between $C$ and $E_i$) for $i = 1, 2$. The lines $AD_1, AD_2, AE_1, AE_2$ intersects $m$ at $M_1, M_2, N_1, N_2$ respectively. Prove that $M_1M_2 = N_1N_2$.
1982 Swedish Mathematical Competition, 4
$ABC$ is a triangle with $AB = 33$, $AC = 21$ and $BC = m$, an integer. There are points $D$, $E$ on the sides $AB$, $AC$ respectively such that $AD = DE = EC = n$, an integer. Find $m$.
2010 Saudi Arabia BMO TST, 2
Quadrilateral $ABCD$ with perpendicular diagonals $AC$ and $BD$ is inscribed in a circle. Altitude $DE$ in triangle $ABD$ intersects diagonal $AC$ in $F$. Prove that $FB = BC$
2013 Oral Moscow Geometry Olympiad, 4
Let $ABC$ be a triangle. On the extensions of sides $AB$ and $CB$ towards $B$, points $C_1$ and $A_1$ are taken, respectively, so that $AC = A_1C = AC_1$. Prove that circumscribed circles of triangles $ABA_1$ and $CBC_1$ intersect on the bisector of angle $B$.
Novosibirsk Oral Geo Oly VII, 2021.6
Inside the equilateral triangle $ABC$, points $P$ and $Q$ are chosen so that the quadrilateral $APQC$ is convex, $AP = PQ = QC$ and $\angle PBQ = 30^o$. Prove that $AQ = BP$.
2005 Peru MO (ONEM), 3
Let $A,B,C,D$, be four different points on a line $\ell$, so that $AB=BC=CD$. In one of the semiplanes determined by the line $\ell$, the points $P$ and $Q$ are chosen in such a way that the triangle $CPQ$ is equilateral with its vertices named clockwise. Let $M$ and $N$ be two points of the plane be such that the triangles $MAP$ and $NQD$ are equilateral (the vertices are also named clockwise). Find the angle $\angle MBN$.
Kyiv City MO Seniors 2003+ geometry, 2017.10.3
Given the square $ABCD$. Let point $M$ be the midpoint of the side $BC$, and $H$ be the foot of the perpendicular from vertex $C$ on the segment $DM$. Prove that $AB = AH$.
(Danilo Hilko)
Kyiv City MO Seniors 2003+ geometry, 2012.11.3
Inside the triangle $ABC$ choose the point $M$, and on the side $BC$ - the point $K$ in such a way that $MK || AB$. The circle passing through the points $M, \, \, K, \, \, C,$ crosses the side $AC$ for the second time at the point $N$, a circle passing through the points $M, \, \, N, \, \, A, $ crosses the side $AB$ for the second time at the point $Q$. Prove that $BM = KQ$.
(Nagel Igor)
Kyiv City MO Juniors Round2 2010+ geometry, 2018.8.31
On the sides $AB$, $BC$ and $CA$ of the isosceles triangle $ABC$ with the vertex at the point $B$ marked the points $M$, $D$ and $K$ respectively so that $AM = 2DC$ and $\angle AMD = \angle KDC$. Prove that $MD = KD$.