This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 509

2021 Novosibirsk Oral Olympiad in Geometry, 3

Prove that in a triangle one of the sides is twice as large as the other if and only if a median and an angle bisector of this triangle are perpendicular

Kyiv City MO Seniors 2003+ geometry, 2014.10.4

The altitueds $A {{A} _ {1}} $, $B {{B} _ {1}}$ and $C {C} _ 1$ are drawn in the acute triangle $ABC$. . The perpendicular $AK$ is drawn from the vertex $A$ on the line ${{A} _ {1}} {{B} _ {1}}$, and the perpendicular $BL$ is drawn from the vertex $B$ on the line ${{C} _ {1}} {{B} _ {1}}$. Prove that ${{A} _ {1}} K = {{B} _ {1}} L$. (Maria Rozhkova)

2016 Saudi Arabia IMO TST, 2

Let $ABCDEF$ be a convex hexagon with $AB = CD = EF$, $BC =DE = FA$ and $\angle A+\angle B = \angle C +\angle D = \angle E +\angle F$. Prove that $\angle A=\angle C=\angle E$ and $\angle B=\angle D=\angle F$. Tran Quang Hung

2019 Federal Competition For Advanced Students, P1, 2

Let $ABC$ be a triangle and $I$ its incenter. The circle passing through $A, C$ and $I$ intersect the line $BC$ for second time at point $X$. The circle passing through $B, C$ and $I$ intersects the line $AC$ for second time at point $Y$. Show that the segments $AY$ and $BX$ have equal length.

2002 Singapore Team Selection Test, 1

Let $A, B, C, D, E$ be five distinct points on a circle $\Gamma$ in the clockwise order and let the extensions of $CD$ and $AE$ meet at a point $Y$ outside $\Gamma$. Suppose $X$ is a point on the extension of $AC$ such that $XB$ is tangent to $\Gamma$ at $B$. Prove that $XY = XB$ if and only if $XY$ is parallel $DE$.

2019 Saudi Arabia Pre-TST + Training Tests, 1.3

Let $ABCDEF$ be a convex hexagon satisfying $AC = DF, CE = FB$ and $EA = BD$. Prove that the lines connecting the midpoints of opposite sides of the hexagon $ABCDEF$ intersect in one point.

2010 Oral Moscow Geometry Olympiad, 5

Points $K$ and $M$ are taken on the sides $AB$ and $CD$ of square $ABCD$, respectively, and on the diagonal $AC$ - point $L$ such that $ML = KL$. Let $P$ be the intersection point of the segments $MK$ and $BD$. Find the angle $\angle KPL$.

Novosibirsk Oral Geo Oly VII, 2023.6

An isosceles triangle $ABC$ with base $AC$ is given. On the rays $CA$, $AB$ and $BC$, the points $D, E$ and $F$ were marked, respectively, in such a way that $AD = AC$, $BE = BA$ and $CF = CB$. Find the sum of the angles $\angle ADB$, $\angle BEC$ and $\angle CFA$.

2010 Grand Duchy of Lithuania, 4

In the triangle $ABC$ angle $C$ is a right angle. On the side $AC$ point $D$ has been found, and on the segment $BD$ point K has been found such that $\angle ABC = \angle KAD = \angle AKD$. Prove that $BK = 2DC$.

2017 Oral Moscow Geometry Olympiad, 1

On side $AB$ of triangle $ABC$ is marked point $K$ such that $AB = CK$. Points $N$ and $M$ are the midpoints of $AK$ and $BC$, respectively. The segments $NM$ and $CK$ intersect in point $P$. Prove that $KN = KP$.

Novosibirsk Oral Geo Oly VIII, 2016.6

An arbitrary point $M$ inside an equilateral triangle $ABC$ was connected to vertices. Prove that on each side the triangle can be selected one point at a time so that the distances between them would be equal to $AM, BM, CM$.

Indonesia MO Shortlist - geometry, g3

Given a quadrilateral $ABCD$ inscribed in circle $\Gamma$.From a point P outside $\Gamma$, draw tangents $PA$ and $PB$ with $A$ and $B$ as touspoints. The line $PC$ intersects $\Gamma$ at point $D$. Draw a line through $B$ parallel to $PA$, this line intersects $AC$ and $AD$ at points $E$ and $F$ respectively. Prove that $BE = BF$.

VMEO IV 2015, 10.2

Given a triangle $ABC$ with obtuse $\angle A$ and attitude $AH$ with $H \in BC$. Let $E,F$ on $CA$, $AB$ satisfying $\angle BEH = \angle C$ and $\angle CFH = \angle B$. Let $BE$ cut $CF$ at $D$. Prove that $DE = DF$.

2016 Grand Duchy of Lithuania, 3

Let $ABC$ be an isosceles triangle with $AB = AC$. Let $D, E$ and $F$ be points on line segments $BC, CA$ and $AB$, respectively, such that $BF = BE$ and such that $ED$ is the angle bisector of $\angle BEC$. Prove that $BD = EF$ if and only if $AF = EC$.

Kyiv City MO Juniors 2003+ geometry, 2021.8.41

On the sides $AB$ and $BC$ of the triangle $ABC$, the points $K$ and $M$ are chosen so that $KM \parallel AC$. The segments $AM$ and $KC$ intersect at the point $O$. It is known that $AK =AO$ and $KM =MC$. Prove that $AM=KB$.

2021 Yasinsky Geometry Olympiad, 3

The segments $AC$ and $BD$ are perpendicular, and $AC$ is twice as large as $BD$ and intersects $BD$ in it in the midpoint. Find the value of the angle $BAD$, if we know that $\angle CAD = \angle CDB$. (Gregory Filippovsky)

1995 Tournament Of Towns, (466) 4

From the vertex $A$ of a triangle $ABC$, three segments are drawn: the bisectors $AM$ and $AN$ of its interior and exterior angles and the tangent $AK$ to the circumscribed circle of the triangle (the points $M$, $K$ and $N$ lie on the line $BC$). Prove that $MK = KN$. (I Sharygin)

2019 Saudi Arabia BMO TST, 2

Let $ABCD$ is a trapezoid with $\angle A = \angle B = 90^o$ and let $E$ is a point lying on side $CD$. Let the circle $\omega$ is inscribed to triangle $ABE$ and tangents sides $AB, AE$ and $BE$ at points $P, F$ and $K$ respectively. Let $KF$ intersects segments $BC$ and $AD$ at points $M$ and $N$ respectively, as well as $PM$ and $PN$ intersect $\omega$ at points $H$ and $T$ respectively. Prove that $PH = PT$.

2020 China Team Selection Test, 2

Given an isosceles triangle $\triangle ABC$, $AB=AC$. A line passes through $M$, the midpoint of $BC$, and intersects segment $AB$ and ray $CA$ at $D$ and $E$, respectively. Let $F$ be a point of $ME$ such that $EF=DM$, and $K$ be a point on $MD$. Let $\Gamma_1$ be the circle passes through $B,D,K$ and $\Gamma_2$ be the circle passes through $C,E,K$. $\Gamma_1$ and $\Gamma_2$ intersect again at $L \neq K$. Let $\omega_1$ and $\omega_2$ be the circumcircle of $\triangle LDE$ and $\triangle LKM$. Prove that, if $\omega_1$ and $\omega_2$ are symmetric wrt $L$, then $BF$ is perpendicular to $BC$.

Kyiv City MO Juniors Round2 2010+ geometry, 2019.8.4

In the triangle $ABC$ it is known that$\angle A = 75^o, \angle C = 45^o$. On the ray $BC$ beyond the point $C$ the point $T$ is taken so that $BC = CT$. Let $M$ be the midpoint of the segment $AT$. Find the measure of the $\angle BMC$. (Anton Trygub)

1993 Rioplatense Mathematical Olympiad, Level 3, 6

Let $ABCDE$ be pentagon such that $AE = ED$ and $BC = CD$. It is known that $\angle BAE + \angle EDC + \angle CB A = 360^o$ and that $P$ is the midpoint of $AB$. Show that the triangle $ECP$ is right.

2018 Dutch IMO TST, 3

Let $ABC$ be an acute triangle, and let $D$ be the foot of the altitude through $A$. On $AD$, there are distinct points $E$ and $F$ such that $|AE| = |BE|$ and $|AF| =|CF|$. A point$ T \ne D$ satis es $\angle BTE = \angle CTF = 90^o$. Show that $|TA|^2 =|TB| \cdot |TC|$.

2007 Sharygin Geometry Olympiad, 13

On the side $AB$ of a triangle $ABC$, two points $X, Y$ are chosen so that $AX = BY$. Lines $CX$ and $CY$ meet the circumcircle of the triangle, for the second time, at points $U$ and $V$. Prove that all lines $UV$ (for all $X, Y$, given $A, B, C$) have a common point.

2011 Grand Duchy of Lithuania, 4

In the cyclic quadrilateral $ABCD$ with $AB = AD$, points $M$ and $N$ lie on the sides $CD$ and $BC$ respectively so that $MN = BN + DM$. Lines $AM$ and $AN$ meet the circumcircle of $ABCD$ again at points $P$ and $Q$ respectively. Prove that the orthocenter of the triangle $APQ$ lies on the segment $MN$.

2009 Dutch IMO TST, 2

Let $ABC$ be a triangle, $P$ the midpoint of $BC$, and $Q$ a point on segment $CA$ such that $|CQ| = 2|QA|$. Let $S$ be the intersection of $BQ$ and $AP$. Prove that $|AS| = |SP|$.