This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 230

2005 Iran MO (3rd Round), 5

Suppose $H$ and $O$ are orthocenter and circumcenter of triangle $ABC$. $\omega$ is circumcircle of $ABC$. $AO$ intersects with $\omega$ at $A_1$. $A_1H$ intersects with $\omega$ at $A'$ and $A''$ is the intersection point of $\omega$ and $AH$. We define points $B',\ B'',\ C'$ and $C''$ similiarly. Prove that $A'A'',B'B''$ and $C'C''$ are concurrent in a point on the Euler line of triangle $ABC$.

2008 Iran MO (3rd Round), 2

Let $ l_a,l_b,l_c$ be three parallel lines passing through $ A,B,C$ respectively. Let $ l_a'$ be reflection of $ l_a$ into $ BC$. $ l_b'$ and $ l_c'$ are defined similarly. Prove that $ l_a',l_b',l_c'$ are concurrent if and only if $ l_a$ is parallel to Euler line of triangle $ ABC$.

2013 Korea - Final Round, 5

Two coprime positive integers $ a, b $ are given. Integer sequence $ \{ a_n \}, \{b_n \} $ satisties \[ (a+b \sqrt2 )^{2n} = a_n + b_n \sqrt2 \] Find all prime numbers $ p $ such that there exist positive integer $ n \le p $ satisfying $ p | b_n $.

1991 Brazil National Olympiad, 4

Show that there exists $n>2$ such that $1991 | 1999 \ldots 91$ (with $n$ 9's).

2023 Euler Olympiad, Round 1, 1

Consider a rectangle $ABCD$ with $BC = 2 \cdot AB$. Let $\omega$ be the circle that touches the sides $AB$, $BC$, and $AD$. A tangent drawn from point $C$ to the circle $\omega$ intersects the segment $AD$ at point $K$. Determine the ratio $\frac{AK}{KD}$. [i]Proposed by Giorgi Arabidze, Georgia[/i]

2006 Italy TST, 2

Let $n$ be a positive integer, and let $A_{n}$ be the the set of all positive integers $a\le n$ such that $n|a^{n}+1$. a) Find all $n$ such that $A_{n}\neq \emptyset$ b) Find all $n$ such that $|{A_{n}}|$ is even and non-zero. c) Is there $n$ such that $|{A_{n}}| = 130$?

2006 AMC 12/AHSME, 25

A sequence $ a_1, a_2, \ldots$ of non-negative integers is defined by the rule $ a_{n \plus{} 2} \equal{} |a_{n \plus{} 1} \minus{} a_n|$ for $ n\ge 1$. If $ a_1 \equal{} 999, a_2 < 999,$ and $ a_{2006} \equal{} 1$, how many different values of $ a_2$ are possible? $ \textbf{(A) } 165 \qquad \textbf{(B) } 324 \qquad \textbf{(C) } 495 \qquad \textbf{(D) } 499 \qquad \textbf{(E) } 660$

2009 Indonesia TST, 4

Given positive integer $ n > 1$ and define \[ S \equal{} \{1,2,\dots,n\}. \] Suppose \[ T \equal{} \{t \in S: \gcd(t,n) \equal{} 1\}. \] Let $ A$ be arbitrary non-empty subset of $ A$ such thar for all $ x,y \in A$, we have $ (xy\mod n) \in A$. Prove that the number of elements of $ A$ divides $ \phi(n)$. ($ \phi(n)$ is Euler-Phi function)

1988 AIME Problems, 12

Tags: geometry , ratio , euler
Let $P$ be an interior point of triangle $ABC$ and extend lines from the vertices through $P$ to the opposite sides. Let $a$, $b$, $c$, and $d$ denote the lengths of the segments indicated in the figure. Find the product $abc$ if $a + b + c = 43$ and $d = 3$. [asy] size(200); defaultpen(fontsize(10)); pair A=origin, B=(14,0), C=(9,12), D=midpoint(B--C), E=midpoint(A--C), F=midpoint(A--B), P=centroid(A,B,C); draw(D--A--B--C--A^^B--E^^C--F); dot(A^^B^^C^^P); label("$a$", P--A, dir(-90)*dir(P--A)); label("$b$", P--B, dir(90)*dir(P--B)); label("$c$", P--C, dir(90)*dir(P--C)); label("$d$", P--D, dir(90)*dir(P--D)); label("$d$", P--E, dir(-90)*dir(P--E)); label("$d$", P--F, dir(-90)*dir(P--F)); label("$A$", A, SW); label("$B$", B, SE); label("$C$", C, N); label("$P$", P, 1.8*dir(285));[/asy]

2023 Euler Olympiad, Round 2, 4

Let $ABCD$ be a trapezoid, with $AD \parallel BC$, let $M$ be the midpoint of $AD$, and let $C_1$ be symmetric point to $C$ with respect to line $BD$. Segment $BM$ meets diagonal $AC$ at point $K$, and ray $C_1K$ meets line $BD$ at point $H$. Prove that $\angle{AHD}$ is a right angle. [i]Proposed by Giorgi Arabidze, Georgia[/i]

1990 IMO Shortlist, 17

Unit cubes are made into beads by drilling a hole through them along a diagonal. The beads are put on a string in such a way that they can move freely in space under the restriction that the vertices of two neighboring cubes are touching. Let $ A$ be the beginning vertex and $ B$ be the end vertex. Let there be $ p \times q \times r$ cubes on the string $ (p, q, r \geq 1).$ [i](a)[/i] Determine for which values of $ p, q,$ and $ r$ it is possible to build a block with dimensions $ p, q,$ and $ r.$ Give reasons for your answers. [i](b)[/i] The same question as (a) with the extra condition that $ A \equal{} B.$

2023 Euler Olympiad, Round 2, 1

Consider a sequence of 100 positive integers. Each member of the sequence, starting from the second one, is derived by either multiplying the previous number by 2 or dividing it by 16. Is it possible for the sum of these 100 numbers to be equal to $2^{2023}$? [i]Proposed by Nika Glunchadze, Georgia[/i]

2005 Uzbekistan National Olympiad, 4

Let $ABCD$ is a cyclic. $K,L,M,N$ are midpoints of segments $AB$, $BC$ $CD$ and $DA$. $H_{1},H_{2},H_{3},H_{4}$ are orthocenters of $AKN$ $KBL$ $LCM$ and $MND$. Prove that $H_{1}H_{2}H_{3}H_{4}$ is a paralelogram.

2007 Romania Team Selection Test, 4

The points $M, N, P$ are chosen on the sides $BC, CA, AB$ of a triangle $\Delta ABC$, such that the triangle $\Delta MNP$ is acute-angled. We denote with $x$ the length of the shortest altitude of the triangle $\Delta ABC$, and with $X$ the length of the longest altitudes of the triangle $\Delta MNP$. Prove that $x \leq 2X$.

2023 Euler Olympiad, Round 1, 2

Tags: euler
A student took a rectangular piece of paper with length equal to one meter and width equal to five centimeters. The student brought the ends together, turning one end 180 degrees and gluing the surfaces to create a figure called a Möbius strip. On one side of this strip, the student placed a flea and an ant. It is known that if the flea and the ant move in different directions on the Möbius strip, they will meet each other in 2 minutes. However, if they move in the same direction, they will meet in 7 minutes. Given that the flea is faster than the ant and both move at constant speeds, determine the speed of the flea. [i]Proposed by Lia Chitishvili, Georgia[/i]

2023 Euler Olympiad, Round 2, 6

Let $n$ be some positive integer. Free university accepts $n^2$ freshmen, where no two students know each other initially. It's known that students can only get to know eachother on parties, which are organized by the university's administration. The administration's goal is to ensure that there does not exist a group of $n$ students where none of them know each other. Organizing a party with $m$ members incurs a cost of $m^2 - m$. Determine the minimal cost for the administration to fulfill their goal. [i]Proposed by Luka Macharashvili, Georgia[/i]

2000 Federal Competition For Advanced Students, Part 2, 1

In a non-equilateral acute-angled triangle $ABC$ with $\angle C = 60^\circ$, $U$ is the circumcenter, $H$ the orthocenter and $D$ the intersection of $AH$ and $BC$. Prove that the Euler line $HU$ bisects the angle $BHD$.

2007 Today's Calculation Of Integral, 172

Evaluate $\int_{-1}^{0}\sqrt{\frac{1+x}{1-x}}dx.$

2012 BMT Spring, 8

You are tossing an unbiased coin. The last $ 28 $ consecutive flips have all resulted in heads. Let $ x $ be the expected number of additional tosses you must make before you get $ 60 $ consecutive heads. Find the sum of all distinct prime factors in $ x $.

1972 Canada National Olympiad, 5

Prove that the equation $x^3+11^3=y^3$ has no solution in positive integers $x$ and $y$.

2005 ITAMO, 2

Let $h$ be a positive integer. The sequence $a_n$ is defined by $a_0 = 1$ and \[a_{n+1} = \{\begin{array}{c} \frac{a_n}{2} \text{ if } a_n \text{ is even }\\\\a_n+h \text{ otherwise }.\end{array}\] For example, $h = 27$ yields $a_1=28, a_2 = 14, a_3 = 7, a_4 = 34$ etc. For which $h$ is there an $n > 0$ with $a_n = 1$?

1990 IMO Shortlist, 5

Given a triangle $ ABC$. Let $ G$, $ I$, $ H$ be the centroid, the incenter and the orthocenter of triangle $ ABC$, respectively. Prove that $ \angle GIH > 90^{\circ}$.

2012 Putnam, 6

Let $p$ be an odd prime number such that $p\equiv 2\pmod{3}.$ Define a permutation $\pi$ of the residue classes modulo $p$ by $\pi(x)\equiv x^3\pmod{p}.$ Show that $\pi$ is an even permutation if and only if $p\equiv 3\pmod{4}.$

2012 Romania Team Selection Test, 2

Let $ABCD$ be a cyclic quadrilateral such that the triangles $BCD$ and $CDA$ are not equilateral. Prove that if the Simson line of $A$ with respect to $\triangle BCD$ is perpendicular to the Euler line of $BCD$, then the Simson line of $B$ with respect to $\triangle ACD$ is perpendicular to the Euler line of $\triangle ACD$.

2018 Vietnam Team Selection Test, 1

Let $ABC$ be a acute, non-isosceles triangle. $D,\ E,\ F$ are the midpoints of sides $AB,\ BC,\ AC$, resp. Denote by $(O),\ (O')$ the circumcircle and Euler circle of $ABC$. An arbitrary point $P$ lies inside triangle $DEF$ and $DP,\ EP,\ FP$ intersect $(O')$ at $D',\ E',\ F'$, resp. Point $A'$ is the point such that $D'$ is the midpoint of $AA'$. Points $B',\ C'$ are defined similarly. a. Prove that if $PO=PO'$ then $O\in(A'B'C')$; b. Point $A'$ is mirrored by $OD$, its image is $X$. $Y,\ Z$ are created in the same manner. $H$ is the orthocenter of $ABC$ and $XH,\ YH,\ ZH$ intersect $BC, AC, AB$ at $M,\ N,\ L$ resp. Prove that $M,\ N,\ L$ are collinear.