This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 649

1990 ITAMO, 4

Let $a,b,c$ be side lengths of a triangle with $a+b+c = 1$. Prove that $a^2 +b^2 +c^2 +4abc \le \frac12$ .

2019 Novosibirsk Oral Olympiad in Geometry, 7

Denote $X,Y$ two convex polygons, such that $X$ is contained inside $Y$. Denote $S (X)$, $P (X)$, $S (Y)$, $P (Y)$ the area and perimeter of the first and second polygons, respectively. Prove that $$ \frac{S(X)}{P(X)}<2 \frac{S(Y)}{P(Y)}.$$

2010 Chile National Olympiad, 5

Consider a line $ \ell $ in the plane and let $ B_1, B_2, B_3 $ be different points in $ \ell$. Let $ A $ be a point that is not in $ \ell$. Show that there is $ P, Q $ in $ {B_1, B_2, B_3} $ with $ P \ne Q $ so that the distance from $ A $ to $ \ell$ is greater than the distance from $ P $ to the line that passes through $ A $ and $ Q $.

2005 Cuba MO, 8

Find the smallest real number $A$, such that there are two different triangles, with integer sidelengths and so that the area of each be $A$.

2020 Swedish Mathematical Competition, 2

The medians of the sides $AC$ and $BC$ in the triangle $ABC$ are perpendicular to each other. Prove that $\frac12 <\frac{|AC|}{|BC|}<2$.

Ukrainian TYM Qualifying - geometry, IV.8

Prove that in an arbitrary convex hexagon there is a diagonal that cuts off from it a triangle whose area does not exceed $\frac16$ of the area of the hexagon. What are the properties of a convex hexagon, each diagonal of which is cut off from it is a triangle whose area is not less than $\frac16$ the area of the hexagon?

2019 Polish Junior MO Finals, 4.

The point $D$ lies on the side $AB$ of the triangle $ABC$. Assume that there exists such a point $E$ on the side $CD$, that $$ \sphericalangle EAD = \sphericalangle AED \quad \text{and} \quad \sphericalangle ECB = \sphericalangle CEB. $$ Show that $AC + BC > AB + CE$.

Indonesia Regional MO OSP SMA - geometry, 2013.5

Given an acute triangle $ABC$. The longest line of altitude is the one from vertex $A$ perpendicular to $BC$, and it's length is equal to the length of the median of vertex $B$. Prove that $\angle ABC \le 60^o$

2014 Hanoi Open Mathematics Competitions, 6

Let $a,b,c$ be the length sides of a given triangle and $x,y,z$ be the sides length of bisectrices, respectively. Prove the following inequality $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}>\frac{1}{a}+\frac{1}{b}+\frac{1}{c}$

1967 IMO Shortlist, 4

Let $k_1$ and $k_2$ be two circles with centers $O_1$ and $O_2$ and equal radius $r$ such that $O_1O_2 = r$. Let $A$ and $B$ be two points lying on the circle $k_1$ and being symmetric to each other with respect to the line $O_1O_2$. Let $P$ be an arbitrary point on $k_2$. Prove that \[PA^2 + PB^2 \geq 2r^2.\]

Estonia Open Senior - geometry, 2015.1.3

Let $ABC$ be a triangle. Let $K, L$ and $M$ be points on the sides $BC, AC$ and $AB$, respectively, such that $\frac{|AM|}{|MB|}\cdot \frac{|BK|}{|KC|}\cdot \frac{|CL|}{|LA|} = 1$. Prove that it is possible to choose two triangles out of $ALM, BMK, CKL$ whose inradii sum up to at least the inradius of triangle $ABC$.

1956 Moscow Mathematical Olympiad, 330

A square of side $a$ is inscribed in a triangle so that two of the square’s vertices lie on the base, and the other two lie on the sides of the triangle. Prove that if $r$ is the radius of the circle inscribed in the triangle, then $r\sqrt2 < a < 2r$.

2000 Saint Petersburg Mathematical Olympiad, 11.2

Point $O$ is the origin of a space. Points $A_1, A_2,\dots, A_n$ have nonnegative coordinates. Prove the following inequality: $$|\overrightarrow{OA_1}|+|\overrightarrow {OA_2}|+\dots+|\overrightarrow {OA_n}|\leq \sqrt{3}|\overrightarrow {OA_1}+\overrightarrow{OA_2}+\dots+\overrightarrow{OA_n}|$$ [I]Proposed by A. Khrabrov[/i]

1988 IMO Longlists, 4

The triangle $ ABC$ is inscribed in a circle. The interior bisectors of the angles $ A,B$ and $ C$ meet the circle again at $ A', B'$ and $ C'$ respectively. Prove that the area of triangle $ A'B'C'$ is greater than or equal to the area of triangle $ ABC.$

2000 Kazakhstan National Olympiad, 8

Given a triangle $ ABC $ and a point $ M $ inside it. Prove that $$ \min \{MA, MB, MC\} + MA + MB + MC <AB + BC + AC. $$

1984 All Soviet Union Mathematical Olympiad, 388

The $A,B,C$ and $D$ points (from left to right) belong to the straight line. Prove that every point $E$, that doesn't belong to the line satisfy: $$|AE| + |ED| + | |AB| - |CD| | > |BE| + |CE|$$

1984 IMO Longlists, 33

Let $ d$ be the sum of the lengths of all the diagonals of a plane convex polygon with $ n$ vertices (where $ n>3$). Let $ p$ be its perimeter. Prove that: \[ n\minus{}3<{2d\over p}<\Bigl[{n\over2}\Bigr]\cdot\Bigl[{n\plus{}1\over 2}\Bigr]\minus{}2,\] where $ [x]$ denotes the greatest integer not exceeding $ x$.

1999 Tournament Of Towns, 2

Let $ABC$ be an acute-angled triangle, $C'$ and $A'$ be arbitrary points on the sides $AB$ and $BC$ respectively, and $B'$ be the midpoint of the side $AC$. (a) Prove that the area of triangle $A'B'C'$ is at most half the area of triangle $ABC$. (b) Prove that the area of triangle $A'B'C'$ is equal to one fourth of the area of triangle $ABC$ if and only if at least one of the points $A'$, $C'$ is the midpoint of the corresponding side. (E Cherepanov)

2013 BMT Spring, 6

Bubble Boy and Bubble Girl live in bubbles of unit radii centered at $(20, 13)$ and $(0, 10)$ respectively. Because Bubble Boy loves Bubble Girl, he wants to reach her as quickly as possible, but he needs to bring a gift; luckily, there are plenty of gifts along the $x$-axis. Assuming that Bubble Girl remains stationary, find the length of the shortest path Bubble Boy can take to visit the $x$-axis and then reach Bubble Girl (the bubble is a solid boundary, and anything the bubble can touch, Bubble Boy can touch too)

1972 Spain Mathematical Olympiad, 3

Given a regular hexagonal prism. Find a polygonal line that, starting from a vertex of the base, runs through all the lateral faces and ends at the vertex of the face top, located on the same edge as the starting vertex, and has a minimum length.

2009 District Olympiad, 2

Hiven an acute triangle $ABC$, consider the midpoints $M$ and $N$ of the sides $AB$ and $AC$, respectively. If point $S$ is variable on side $BC$, prove that $$(MB - MS)(NC - NS) \le 0$$

Ukrainian TYM Qualifying - geometry, VI.18

The convex polygon $A_1A_2...A_n$ is given in the plane. Denote by $T_k$ $(k \le n)$ the convex $k$-gon of the largest area, with vertices at the points $A_1, A_2, ..., A_n$ and by $T_k(A+1)$ the convex k-gon of the largest area with vertices at the points $A_1, A_2, ..., A_n$ in which one of the vertices is in $A_1$. Set the relationship between the order of arrangement in the sequence $A_1, A_2, ..., A_n$ vertices: 1) $T_3$ and $T_3 (A_2)$ 2) $T_k$ and $T_k (A_1) $ 3) $T_k$ and $T_{k+1}$

Kyiv City MO Seniors 2003+ geometry, 2019.11.2

In an acute-angled triangle $ABC$, in which $AB<AC$, the point $M$ is the midpoint of the side $BC, K$ is the midpoint of the broken line segment $BAC$ . Prove that $\sqrt2 KM > AB$. (George Naumenko)

2020 HMIC, 5

A triangle and a circle are in the same plane. Show that the area of the intersection of the triangle and the circle is at most one third of the area of the triangle plus one half of the area of the circle. [i]Krit Boonsiriseth[/i]

1996 Estonia Team Selection Test, 2

Let $a,b,c$ be the sides of a triangle, $\alpha ,\beta ,\gamma$ the corresponding angles and $r$ the inradius. Prove that $$a\cdot sin\alpha+b\cdot sin\beta+c\cdot sin\gamma\geq 9r$$