This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1581

2013 Lusophon Mathematical Olympiad, 6

Consider a triangle $ABC$. Let $S$ be a circumference in the interior of the triangle that is tangent to the sides $BC$, $CA$, $AB$ at the points $D$, $E$, $F$ respectively. In the exterior of the triangle we draw three circumferences $S_A$, $S_B$, $S_C$. The circumference $S_A$ is tangent to $BC$ at $L$ and to the prolongation of the lines $AB$, $AC$ at the points $M$, $N$ respectively. The circumference $S_B$ is tangent to $AC$ at $E$ and to the prolongation of the line $BC$ at $P$. The circumference $S_C$ is tangent to $AB$ at $F$ and to the prolongation of the line $BC$ at $Q$. Show that the lines $EP$, $FQ$ and $AL$ meet at a point of the circumference $S$.

2002 Iran MO (3rd Round), 4

$a_{n}$ ($n$ is integer) is a sequence from positive reals that \[a_{n}\geq \frac{a_{n+2}+a_{n+1}+a_{n-1}+a_{n-2}}4\] Prove $a_{n}$ is constant.

2008 India Regional Mathematical Olympiad, 1

Let $ ABC$ be an acute angled triangle; let $ D,F$ be the midpoints of $ BC,AB$ respectively. Let the perpendicular from $ F$ to $ AC$ and the perpendicular from $ B$ ti $ BC$ meet in $ N$: Prove that $ ND$ is the circumradius of $ ABC$. [15 points out of 100 for the 6 problems]

2005 Vietnam Team Selection Test, 1

Let $(I),(O)$ be the incircle, and, respectiely, circumcircle of $ABC$. $(I)$ touches $BC,CA,AB$ in $D,E,F$ respectively. We are also given three circles $\omega_a,\omega_b,\omega_c$, tangent to $(I),(O)$ in $D,K$ (for $\omega_a$), $E,M$ (for $\omega_b$), and $F,N$ (for $\omega_c$). [b]a)[/b] Show that $DK,EM,FN$ are concurrent in a point $P$; [b]b)[/b] Show that the orthocenter of $DEF$ lies on $OP$.

2002 AMC 10, 24

Riders on a Ferris wheel travel in a circle in a vertical plane. A particular wheel has radius $ 20$ feet and revolves at the constant rate of one revolution per minute. How many seconds does it take a rider to travel from the bottom of the wheel to a point $ 10$ vertical feet above the bottom? $ \textbf{(A)}\ 5 \qquad \textbf{(B)}\ 6 \qquad \textbf{(C)}\ 7.5 \qquad \textbf{(D)}\ 10 \qquad \textbf{(E)}\ 15$

1988 Romania Team Selection Test, 3

Consider all regular convex and star polygons inscribed in a given circle and having $n$ [i]sides[/i]. We call two such polygons to be equivalent if it is possible to obtain one from the other using a rotation about the center of the circle. How many classes of such polygons exist? [i]Mircea Becheanu[/i]

2007 China Team Selection Test, 1

Points $ A$ and $ B$ lie on the circle with center $ O.$ Let point $ C$ lies outside the circle; let $ CS$ and $ CT$ be tangents to the circle. $ M$ be the midpoint of minor arc $ AB$ of $ (O).$ $ MS,\,MT$ intersect $ AB$ at points $ E,\,F$ respectively. The lines passing through $ E,\,F$ perpendicular to $ AB$ cut $ OS,\,OT$ at $ X$ and $ Y$ respectively. A line passed through $ C$ intersect the circle $ (O)$ at $ P,\,Q$ ($ P$ lies on segment $ CQ$). Let $ R$ be the intersection of $ MP$ and $ AB,$ and let $ Z$ be the circumcentre of triangle $ PQR.$ Prove that: $ X,\,Y,\,Z$ are collinear.

2012 Turkey Team Selection Test, 1

In a triangle $ABC,$ incircle touches the sides $BC, CA, AB$ at $D, E, F,$ respectively. A circle $\omega$ passing through $A$ and tangent to line $BC$ at $D$ intersects the line segments $BF$ and $CE$ at $K$ and $L,$ respectively. The line passing through $E$ and parallel to $DL$ intersects the line passing through $F$ and parallel to $DK$ at $P.$ If $R_1, R_2, R_3, R_4$ denotes the circumradius of the triangles $AFD, AED, FPD, EPD,$ respectively, prove that $R_1R_4=R_2R_3.$

2012 Iran MO (3rd Round), 3

Cosider ellipse $\epsilon$ with two foci $A$ and $B$ such that the lengths of it's major axis and minor axis are $2a$ and $2b$ respectively. From a point $T$ outside of the ellipse, we draw two tangent lines $TP$ and $TQ$ to the ellipse $\epsilon$. Prove that \[\frac{TP}{TQ}\ge \frac{b}{a}.\] [i]Proposed by Morteza Saghafian[/i]

2013 Iran MO (3rd Round), 2

We define the distance between two circles $\omega ,\omega '$by the length of the common external tangent of the circles and show it by $d(\omega , \omega ')$. If two circles doesn't have a common external tangent then the distance between them is undefined. A point is also a circle with radius $0$ and the distance between two cirlces can be zero. (a) [b]Centroid.[/b] $n$ circles $\omega_1,\dots, \omega_n$ are fixed on the plane. Prove that there exists a unique circle $\overline \omega$ such that for each circle $\omega$ on the plane the square of distance between $\omega$ and $\overline \omega$ minus the sum of squares of distances of $\omega$ from each of the $\omega_i$s $1\leq i \leq n$ is constant, in other words:\[d(\omega,\overline \omega)^2-\frac{1}{n}{\sum_{i=1}}^n d(\omega_i,\omega)^2= constant\] (b) [b]Perpendicular Bisector.[/b] Suppose that the circle $\omega$ has the same distance from $\omega_1,\omega_2$. Consider $\omega_3$ a circle tangent to both of the common external tangents of $\omega_1,\omega_2$. Prove that the distance of $\omega$ from centroid of $\omega_1 , \omega_2$ is not more than the distance of $\omega$ and $\omega_3$. (If the distances are all defined) (c) [b]Circumcentre.[/b] Let $C$ be the set of all circles that each of them has the same distance from fixed circles $\omega_1,\omega_2,\omega_3$. Prove that there exists a point on the plane which is the external homothety center of each two elements of $C$. (d) [b]Regular Tetrahedron.[/b] Does there exist 4 circles on the plane which the distance between each two of them equals to $1$? Time allowed for this problem was 150 minutes.

2002 AIME Problems, 14

The perimeter of triangle $APM$ is $152,$ and the angle $PAM$ is a right angle. A circle of radius $19$ with center $O$ on $\overline{AP}$ is drawn so that it is tangent to $\overline{AM}$ and $\overline{PM}.$ Given that $OP=m/n,$ where $m$ and $n$ are relatively prime positive integers, find $m+n.$

2008 AMC 12/AHSME, 14

What is the area of the region defined by the inequality $ |3x\minus{}18|\plus{}|2y\plus{}7|\le 3$? $ \textbf{(A)}\ 3 \qquad \textbf{(B)}\ \frac{7}{2} \qquad \textbf{(C)}\ 4 \qquad \textbf{(D)}\ \frac{9}{2} \qquad \textbf{(E)}\ 5$

2016 CCA Math Bonanza, I6

Let $a,b,c$ be non-zero real numbers. The lines $ax + by = c$ and $bx + cy = a$ are perpendicular and intersect at a point $P$ such that $P$ also lies on the line $y=2x$. Compute the coordinates of point $P$. [i]2016 CCA Math Bonanza Individual #6[/i]

1992 AMC 12/AHSME, 12

Let $y = mx + b$ be the image when the line $x - 3y + 11 = 0$ is reflected across the x-axis. The value of $m + b$ is $ \textbf{(A)}\ -6\qquad\textbf{(B)}\ -5\qquad\textbf{(C)}\ -4\qquad\textbf{(D)}\ -3\qquad\textbf{(E)}\ -2 $

1992 Tournament Of Towns, (346) 4

On the plane is give a broken line $ABCD$ in which $AB = BC = CD = 1$, and $AD$ is not equal to $1$. The positions of $B$ and $C$ are fixed but $A$ and $D$ change their positions in turn according to the following rule (preserving the distance rules given): the point $A$ is reflected with respect to the line $BD$, then $D$ is reflected with respect to the line $AC$ (in which $A$ occupies its new position), then $A$ is reflected with respect to the line $BD$ ($D$ occupying its new position), $D$ is reflected with respect to the line $AC$, and so on. Prove that after several steps $A$ and $D$ coincide with their initial positions. (M Kontzewich)

2014 Taiwan TST Round 3, 3

Let $M$ be any point on the circumcircle of triangle $ABC$. Suppose the tangents from $M$ to the incircle meet $BC$ at two points $X_1$ and $X_2$. Prove that the circumcircle of triangle $MX_1X_2$ intersects the circumcircle of $ABC$ again at the tangency point of the $A$-mixtilinear incircle.

2014 Contests, 2

Two circles $O_1$ and $O_2$ intersect each other at $M$ and $N$. The common tangent to two circles nearer to $M$ touch $O_1$ and $O_2$ at $A$ and $B$ respectively. Let $C$ and $D$ be the reflection of $A$ and $B$ respectively with respect to $M$. The circumcircle of the triangle $DCM$ intersect circles $O_1$ and $O_2$ respectively at points $E$ and $F$ (both distinct from $M$). Show that the circumcircles of triangles $MEF$ and $NEF$ have same radius length.

MIPT Undergraduate Contest 2019, 1.1 & 2.1

In $\mathbb{R}^3$, let there be a cube $Q$ and a sequence of other cubes, all of which are homothetic to $Q$ with coefficients of homothety that are each smaller than $1$. Prove that if this sequence of homothetic cubes completely fills $Q$, the sum of their coefficients of homothety is not less than $4$.

2012 Germany Team Selection Test, 2

Let $ABC$ be an acute triangle. Let $\omega$ be a circle whose centre $L$ lies on the side $BC$. Suppose that $\omega$ is tangent to $AB$ at $B'$ and $AC$ at $C'$. Suppose also that the circumcentre $O$ of triangle $ABC$ lies on the shorter arc $B'C'$ of $\omega$. Prove that the circumcircle of $ABC$ and $\omega$ meet at two points. [i]Proposed by Härmel Nestra, Estonia[/i]

2013 Turkey Team Selection Test, 3

Let $O$ be the circumcenter and $I$ be the incenter of an acute triangle $ABC$ with $m(\widehat{B}) \neq m(\widehat{C})$. Let $D$, $E$, $F$ be the midpoints of the sides $[BC]$, $[CA]$, $[AB]$, respectively. Let $T$ be the foot of perpendicular from $I$ to $[AB]$. Let $P$ be the circumcenter of the triangle $DEF$ and $Q$ be the midpoint of $[OI]$. If $A$, $P$, $Q$ are collinear, prove that \[\dfrac{|AO|}{|OD|}-\dfrac{|BC|}{|AT|}=4.\]

2009 Romania Team Selection Test, 1

Given two (identical) polygonal domains in the Euclidean plane, it is not possible in general to superpose the two using only translations and rotations. Prove that this can however be achieved by splitting one of the domains into a finite number of polygonal subdomains which then fit together, via translations and rotations in the plane, to recover the other domain.

2007 Romania Team Selection Test, 2

Let $ABC$ be a triangle, and $\omega_{a}$, $\omega_{b}$, $\omega_{c}$ be circles inside $ABC$, that are tangent (externally) one to each other, such that $\omega_{a}$ is tangent to $AB$ and $AC$, $\omega_{b}$ is tangent to $BA$ and $BC$, and $\omega_{c}$ is tangent to $CA$ and $CB$. Let $D$ be the common point of $\omega_{b}$ and $\omega_{c}$, $E$ the common point of $\omega_{c}$ and $\omega_{a}$, and $F$ the common point of $\omega_{a}$ and $\omega_{b}$. Show that the lines $AD$, $BE$ and $CF$ have a common point.

1974 IMO Longlists, 4

Let $K_a,K_b,K_c$ with centres $O_a,O_b,O_c$ be the excircles of a triangle $ABC$, touching the interiors of the sides $BC,CA,AB$ at points $T_a,T_b,T_c$ respectively. Prove that the lines $O_aT_a,O_bT_b,O_cT_c$ are concurrent in a point $P$ for which $PO_a=PO_b=PO_c=2R$ holds, where $R$ denotes the circumradius of $ABC$. Also prove that the circumcentre $O$ of $ABC$ is the midpoint of the segment $PI$, where $I$ is the incentre of $ABC$.

2001 Polish MO Finals, 2

Let $ABCD$ be a parallelogram and let $K$ and $L$ be points on the segments $BC$ and $CD$, respectively, such that $BK\cdot AD=DL\cdot AB$. Let the lines $DK$ and $BL$ intersect at $P$. Show that $\measuredangle DAP=\measuredangle BAC$.

2011 Indonesia TST, 3

Let $ABC$ and $PQR$ be two triangles such that [list] [b](a)[/b] $P$ is the mid-point of $BC$ and $A$ is the midpoint of $QR$. [b](b)[/b] $QR$ bisects $\angle BAC$ and $BC$ bisects $\angle QPR$ [/list] Prove that $AB+AC=PQ+PR$.