Found problems: 1581
2005 QEDMO 1st, 2 (G2)
Let $ABC$ be a triangle. Let $C^{\prime}$ and $A^{\prime}$ be the reflections of its vertices $C$ and $A$, respectively, in the altitude of triangle $ABC$ issuing from $B$. The perpendicular to the line $BA^{\prime}$ through the point $C^{\prime}$ intersects the line $BC$ at $U$; the perpendicular to the line $BC^{\prime}$ through the point $A^{\prime}$ intersects the line $BA$ at $V$. Prove that $UV \parallel CA$.
Darij
2012 China National Olympiad, 1
In the triangle $ABC$, $\angle A$ is biggest. On the circumcircle of $\triangle ABC$, let $D$ be the midpoint of $\widehat{ABC}$ and $E$ be the midpoint of $\widehat{ACB}$. The circle $c_1$ passes through $A,B$ and is tangent to $AC$ at $A$, the circle $c_2$ passes through $A,E$ and is tangent $AD$ at $A$. $c_1$ and $c_2$ intersect at $A$ and $P$. Prove that $AP$ bisects $\angle BAC$.
[hide="Diagram"][asy]
/* File unicodetex not found. */
/* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki, go to User:Azjps/geogebra */
import graph; size(14.4cm);
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */
pen dotstyle = black; /* point style */
real xmin = -5.23, xmax = 9.18, ymin = -2.97, ymax = 4.82; /* image dimensions */
/* draw figures */
draw(circle((-1.32,1.36), 2.98));
draw(circle((3.56,1.53), 3.18));
draw((0.92,3.31)--(-2.72,-1.27));
draw(circle((0.08,0.25), 3.18));
draw((-2.72,-1.27)--(3.13,-0.65));
draw((3.13,-0.65)--(0.92,3.31));
draw((0.92,3.31)--(2.71,-1.54));
draw((-2.41,-1.74)--(0.92,3.31));
draw((0.92,3.31)--(1.05,-0.43));
/* dots and labels */
dot((-1.32,1.36),dotstyle);
dot((0.92,3.31),dotstyle);
label("$A$", (0.81,3.72), NE * labelscalefactor);
label("$c_1$", (-2.81,3.53), NE * labelscalefactor);
dot((3.56,1.53),dotstyle);
label("$c_2$", (3.43,3.98), NE * labelscalefactor);
dot((1.05,-0.43),dotstyle);
label("$P$", (0.5,-0.43), NE * labelscalefactor);
dot((-2.72,-1.27),dotstyle);
label("$B$", (-3.02,-1.57), NE * labelscalefactor);
dot((2.71,-1.54),dotstyle);
label("$E$", (2.71,-1.86), NE * labelscalefactor);
dot((3.13,-0.65),dotstyle);
label("$C$", (3.39,-0.9), NE * labelscalefactor);
dot((-2.41,-1.74),dotstyle);
label("$D$", (-2.78,-2.07), NE * labelscalefactor);
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);
/* end of picture */[/asy][/hide]
1999 Tuymaada Olympiad, 1
In the triangle $ABC$ we have $\angle ABC=100^\circ$, $\angle ACB=65^\circ$, $M\in AB$, $N\in AC$, and $\angle MCB=55^\circ$, $\angle NBC=80^\circ$. Find $\angle NMC$.
[i]St.Petersburg folklore[/i]
2014 Harvard-MIT Mathematics Tournament, 4
In quadrilateral $ABCD$, $\angle DAC = 98^{\circ}$, $\angle DBC = 82^\circ$, $\angle BCD = 70^\circ$, and $BC = AD$. Find $\angle ACD.$
2008 Saint Petersburg Mathematical Olympiad, 1
Replacing any of the coefficients of quadratic trinomial $f(x)=ax^2+bx+c$ with an $1$ will result in a quadratic trinomial with at least one real root. Prove that the resulting trinomial attains a negative value at at least one point.
EDIT: Oops I failed, added "with a 1." Also, I am sorry for not knowing these are posted already, however, these weren't posted in the contest lab yet, which made me think they weren't translated yet.
Note: fresh translation
2014 Postal Coaching, 4
Let $ABC$ and $PQR$ be two triangles such that
[list]
[b](a)[/b] $P$ is the mid-point of $BC$ and $A$ is the midpoint of $QR$.
[b](b)[/b] $QR$ bisects $\angle BAC$ and $BC$ bisects $\angle QPR$
[/list]
Prove that $AB+AC=PQ+PR$.
Today's calculation of integrals, 880
For $a>2$, let $f(t)=\frac{\sin ^ 2 at+t^2}{at\sin at},\ g(t)=\frac{\sin ^ 2 at-t^2}{at\sin at}\ \left(0<|t|<\frac{\pi}{2a}\right)$ and
let $C: x^2-y^2=\frac{4}{a^2}\ \left(x\geq \frac{2}{a}\right).$ Answer the questions as follows.
(1) Show that the point $(f(t),\ g(t))$ lies on the curve $C$.
(2) Find the normal line of the curve $C$ at the point $\left(\lim_{t\rightarrow 0} f(t),\ \lim_{t\rightarrow 0} g(t)\right).$
(3) Let $V(a)$ be the volume of the solid generated by a rotation of the part enclosed by the curve $C$, the nornal line found in (2) and the $x$-axis. Express $V(a)$ in terms of $a$, then find $\lim_{a\to\infty} V(a)$.
2017 CMIMC Individual Finals, 3
The parabola $\mathcal P$ given by equation $y=x^2$ is rotated some acute angle $\theta$ clockwise about the origin such that it hits both the $x$ and $y$ axes at two distinct points. Suppose the length of the segment $\mathcal P$ cuts the $x$-axis is $1$. What is the length of the segment $\mathcal P$ cuts the $y$-axis?
2012 Germany Team Selection Test, 2
Let $ABC$ be an acute triangle. Let $\omega$ be a circle whose centre $L$ lies on the side $BC$. Suppose that $\omega$ is tangent to $AB$ at $B'$ and $AC$ at $C'$. Suppose also that the circumcentre $O$ of triangle $ABC$ lies on the shorter arc $B'C'$ of $\omega$. Prove that the circumcircle of $ABC$ and $\omega$ meet at two points.
[i]Proposed by Härmel Nestra, Estonia[/i]
2010 IMO Shortlist, 7
Three circular arcs $\gamma_1, \gamma_2,$ and $\gamma_3$ connect the points $A$ and $C.$ These arcs lie in the same half-plane defined by line $AC$ in such a way that arc $\gamma_2$ lies between the arcs $\gamma_1$ and $\gamma_3.$ Point $B$ lies on the segment $AC.$ Let $h_1, h_2$, and $h_3$ be three rays starting at $B,$ lying in the same half-plane, $h_2$ being between $h_1$ and $h_3.$ For $i, j = 1, 2, 3,$ denote by $V_{ij}$ the point of intersection of $h_i$ and $\gamma_j$ (see the Figure below). Denote by $\widehat{V_{ij}V_{kj}}\widehat{V_{kl}V_{il}}$ the curved quadrilateral, whose sides are the segments $V_{ij}V_{il},$ $V_{kj}V_{kl}$ and arcs $V_{ij}V_{kj}$ and $V_{il}V_{kl}.$ We say that this quadrilateral is $circumscribed$ if there exists a circle touching these two segments and two arcs. Prove that if the curved quadrilaterals $\widehat{V_{11}V_{21}}\widehat{V_{22}V_{12}}, \widehat{V_{12}V_{22}}\widehat{V_{23}V_{13}},\widehat{V_{21}V_{31}}\widehat{V_{32}V_{22}}$ are circumscribed, then the curved quadrilateral $\widehat{V_{22}V_{32}}\widehat{V_{33}V_{23}}$ is circumscribed, too.
[i]Proposed by Géza Kós, Hungary[/i]
[asy]
pathpen=black;
size(400);
pair A=(0,0), B=(4,0), C=(10,0);
draw(L(A,C,0.3));
MP("A",A); MP("B",B); MP("C",C);
pair X=(5,-7);
path G1=D(arc(X,C,A));
pair Y=(5,7), Z=(9,6);
draw(Z--B--Y);
struct T {pair C;real r;};
T f(pair X, pair B, pair Y, pair Z)
{
pair S=unit(Y-B)+unit(Z-B);
real s=abs(sin(angle((Y-B)/(Z-B))/2));
real t=10, r=abs(X-A);
pair Q;
for(int k=0;k<30;++k)
{
Q=B+t*S;
t-=(abs(X-Q)-r)/abs(S)-s*t;
}
T T=new T;
T.C=Q; T.r=s*t*abs(S);
return T;
}
void g(pair Q, real r)
{
real t=0;
for(int k=0;k<30;++k)
{
X=(5,t);
t+=(abs(X-Q)+r-abs(X-A));
}
}
pair Z1=(1.07,6);
draw(B--Z1);
T T=f(X,B,Y,Z1);
draw(CR(T.C,T.r));
T T=f(X,B,Y,Z);
draw(CR(T.C,T.r));
g(T.C,T.r);
path G2=D(arc(X,C,A));
T T=f(X,B,Y,Z1);
draw(CR(T.C,T.r));
T=f(X,B,Y,Z);
draw(CR(T.C,T.r));
g(T.C,T.r);
path G3=D(arc(X,C,A));
pen p=black+fontsize(8);
MC("\gamma_1",G1,0.85,p);
MC("\gamma_2",G2,0.85,NNW,p);
MC("\gamma_3",G3,0.85,WNW,p);
MC("h_1",B--Z1,0.95,E,p);
MC("h_2",B--Y,0.95,E,p);
MC("h_3",B--Z,0.95,E,p);
path[] G={G1,G2,G3};
path[] H={B--Z1,B--Y,B--Z};
pair[][] al={{S+SSW,S+SSW,3*S},{SE,NE,NW},{2*SSE,2*SSE,2*E}};
for(int i=0;i<3;++i)
for(int j=0;j<3;++j)
MP("V_{"+string(i+1)+string(j+1)+"}",IP(H[i],G[j]),al[i][j],fontsize(8));[/asy]
2020 CCA Math Bonanza, TB3
Let $ABC$ be a triangle with $AB=13$, $BC=14$, and $CA=15$. The incircle of $ABC$ meets $BC$ at $D$. Line $AD$ meets the circle through $B$, $D$, and the reflection of $C$ over $AD$ at a point $P\neq D$. Compute $AP$.
[i]2020 CCA Math Bonanza Tiebreaker Round #4[/i]
2013 ELMO Shortlist, 2
Let $ABC$ be a scalene triangle with circumcircle $\Gamma$, and let $D$,$E$,$F$ be the points where its incircle meets $BC$, $AC$, $AB$ respectively. Let the circumcircles of $\triangle AEF$, $\triangle BFD$, and $\triangle CDE$ meet $\Gamma$ a second time at $X,Y,Z$ respectively. Prove that the perpendiculars from $A,B,C$ to $AX,BY,CZ$ respectively are concurrent.
[i]Proposed by Michael Kural[/i]
1995 China Team Selection Test, 2
Given a fixed acute angle $\theta$ and a pair of internally tangent circles, let the line $l$ which passes through the point of tangency, $A$, cut the larger circle again at $B$ ($l$ does not pass through the centers of the circles). Let $M$ be a point on the major arc $AB$ of the larger circle, $N$ the point where $AM$ intersects the smaller circle, and $P$ the point on ray $MB$ such that $\angle MPN = \theta$. Find the locus of $P$ as $M$ moves on major arc $AB$ of the larger circle.
1995 Iran MO (2nd round), 2
Let $ABC$ be an acute triangle and let $\ell$ be a line in the plane of triangle $ABC.$ We've drawn the reflection of the line $\ell$ over the sides $AB, BC$ and $AC$ and they intersect in the points $A', B'$ and $C'.$ Prove that the incenter of the triangle $A'B'C'$ lies on the circumcircle of the triangle $ABC.$
2012 Iran MO (2nd Round), 1
Consider a circle $C_1$ and a point $O$ on it. Circle $C_2$ with center $O$, intersects $C_1$ in two points $P$ and $Q$. $C_3$ is a circle which is externally tangent to $C_2$ at $R$ and internally tangent to $C_1$ at $S$ and suppose that $RS$ passes through $Q$. Suppose $X$ and $Y$ are second intersection points of $PR$ and $OR$ with $C_1$. Prove that $QX$ is parallel with $SY$.
2006 Hong Kong TST., 3
In triangle ABC, the altitude, angle bisector and median from C divide the angle C into four equal angles. Find angle B.
1994 AIME Problems, 6
The graphs of the equations \[ y=k, \qquad y=\sqrt{3}x+2k, \qquad y=-\sqrt{3}x+2k, \] are drawn in the coordinate plane for $k=-10,-9,-8,\ldots,9,10.$ These 63 lines cut part of the plane into equilateral triangles of side $2/\sqrt{3}.$ How many such triangles are formed?
2002 China Team Selection Test, 2
Circles $ \omega_{1}$ and $ \omega_{2}$ intersect at points $ A$ and $ B.$ Points $ C$ and $ D$ are on circles $ \omega_{1}$ and $ \omega_{2},$ respectively,
such that lines $ AC$ and $ AD$ are tangent to circles $ \omega_{2}$ and $ \omega_{1},$ respectively.
Let $ I_{1}$ and $ I_{2}$ be the incenters of triangles $ ABC$ and $ ABD,$ respectively. Segments $ I_{1}I_{2}$ and $ AB$ intersect at $ E$.
Prove that: $ \frac {1}{AE} \equal{} \frac {1}{AC} \plus{} \frac {1}{AD}$
2003 Federal Competition For Advanced Students, Part 2, 2
Let $a, b, c$ be nonzero real numbers for which there exist $\alpha, \beta, \gamma \in\{-1, 1\}$ with $\alpha a + \beta b + \gamma c = 0$. What is the smallest possible value of
\[\left( \frac{a^3+b^3+c^3}{abc}\right)^2 ?\]
2019 BMT Spring, 6
Let $ \triangle ABE $ be a triangle with $ \frac{AB}{3} = \frac{BE}{4} = \frac{EA}{5} $. Let $ D \neq A $ be on line $ \overline{AE} $ such that $ AE = ED $ and $ D $ is closer to $ E $ than to $ A $. Moreover, let $ C $ be a point such that $ BCDE $ is a parallelogram. Furthermore, let $ M $ be on line $ \overline{CD} $ such that $ \overline{AM} $ bisects $ \angle BAE $, and let $ P $ be the intersection of $ \overline{AM} $ and $ \overline{BE} $. Compute the ratio of $ PM $ to the perimeter of $ \triangle ABE $.
2013 F = Ma, 2
Jordi stands 20 m from a wall and Diego stands 10 m from the same wall. Jordi throws a ball at an angle of 30 above the horizontal, and it collides elastically with the wall. How fast does Jordi need to throw the ball so that Diego will catch it? Consider Jordi and Diego to be the same height, and both are on the same perpendicular line from the wall.
$\textbf{(A) } 11 \text{ m/s}\\
\textbf{(B) } 15 \text{ m/s}\\
\textbf{(C) } 19 \text{ m/s}\\
\textbf{(D) } 30 \text{ m/s}\\
\textbf{(E) } 35 \text{ m/s}$
2012 AIME Problems, 6
Let $z = a + bi$ be the complex number with $|z| = 5$ and $b > 0$ such that the distance between $(1 + 2i)z^3$ and $z^5$ is maximized, and let $z^4 = c + di$.
Find $c+d$.
2012 Iran Team Selection Test, 3
The pentagon $ABCDE$ is inscirbed in a circle $w$. Suppose that $w_a,w_b,w_c,w_d,w_e$ are reflections of $w$ with respect to sides $AB,BC,CD,DE,EA$ respectively. Let $A'$ be the second intersection point of $w_a,w_e$ and define $B',C',D',E'$ similarly. Prove that
\[2\le \frac{S_{A'B'C'D'E'}}{S_{ABCDE}}\le 3,\]
where $S_X$ denotes the surface of figure $X$.
[i]Proposed by Morteza Saghafian, Ali khezeli[/i]
1988 China Team Selection Test, 3
A polygon $\prod$ is given in the $OXY$ plane and its area exceeds $n.$ Prove that there exist $n+1$ points $P_{1}(x_1, y_1), P_{2}(x_2, y_2), \ldots, P_{n+1}(x_{n+1}, y_{n+1})$ in $\prod$ such that $\forall i,j \in \{1, 2, \ldots, n+1\}$, $x_j - x_i$ and $y_j - y_i$ are all integers.
1989 IMO Longlists, 63
Let $ l_i,$ $ i \equal{} 1,2,3$ be three non-collinear straight lines in the plane, which build a triangle, and $ f_i$ the axial reflections in $ l_i$. Prove that for each point $ P$ in the plane there exists finite interconnections (compositions) of the reflections of $ f_i$ which carries $ P$ into the triangle built by the straight lines $ l_i,$ i.e. maps that point to a point interior to the triangle.