Found problems: 1581
2007 Hong kong National Olympiad, 1
Let $ABC$ be a triangle and $D$ be a point on $BC$ such that $AB+BD=AC+CD$. The line $AD$ intersects the incircle of triangle $ABC$ at $X$ and $Y$ where $X$ is closer to $A$ than $Y$ i. Suppose $BC$ is tangent to the incircle at $E$, prove that:
1) $EY$ is perpendicular to $AD$;
2) $XD=2IM$ where $I$ is the incentre and $M$ is the midpoint of $BC$.
2006 QEDMO 2nd, 14
On the sides $BC$, $CA$, $AB$ of an acute-angled triangle $ABC$, we erect (outwardly) the squares $BB_aC_aC$, $CC_bA_bA$, $AA_cB_cB$, respectively. On the sides $B_cB_a$ and $C_aC_b$ of the triangles $BB_cB_a$ and $CC_aC_b$, we erect (outwardly) the squares $B_cB_vB_uB_a$ and $C_aC_uC_vC_b$.
Prove that $B_uC_u\parallel BC$.
[i]Comment.[/i] This problem originates in the 68th Moscow MO 2005, and a solution was posted in http://www.mathlinks.ro/Forum/viewtopic.php?t=30184 . However ingenious this solution is, there is a different one which shows a bit more: $B_uC_u=4\cdot BC$.
Darij
2011 India Regional Mathematical Olympiad, 1
Let $ABC$ be an acute angled scalene triangle with circumcentre $O$ and orthocentre $H.$ If $M$ is the midpoint of $BC,$ then show that $AO$ and $HM$ intersect on the circumcircle of $ABC.$
1996 All-Russian Olympiad, 1
Can the number obtained by writing the numbers from 1 to $n$ in order ($n > 1$) be the same when read left-to-right and right-to-left?
[i]N. Agakhanov[/i]
2014 Dutch IMO TST, 2
Let $\triangle ABC$ be a triangle. Let $M$ be the midpoint of $BC$ and let $D$ be a point on the interior of side $AB$. The intersection of $AM$ and $CD$ is called $E$. Suppose that $|AD|=|DE|$. Prove that $|AB|=|CE|$.
2016 Sharygin Geometry Olympiad, 7
Restore a triangle by one of its vertices, the circumcenter and the Lemoine's point.
[i](The Lemoine's point is the intersection point of the reflections of the medians in the correspondent angle bisectors)[/i]
2017 CentroAmerican, 3
Let $ABC$ be a triangle and $D$ be the foot of the altitude from $A$. Let $l$ be the line that passes through the midpoints of $BC$ and $AC$. $E$ is the reflection of $D$ over $l$. Prove that the circumcentre of $\triangle ABC$ lies on the line $AE$.
2004 ITAMO, 2
Two parallel lines $r,s$ and two points $P \in r$ and $Q \in s$ are given in a plane. Consider all pairs of circles $(C_P, C_Q)$ in that plane such that $C_P$ touches $r$ at $P$ and $C_Q$ touches $s$ at $Q$ and which touch each other externally at some point $T$. Find the locus of $T$.
2007 AIME Problems, 9
In right triangle $ABC$ with right angle $C$, $CA=30$ and $CB=16$. Its legs $\overline{CA}$ and $\overline{CB}$ are extended beyond $A$ and $B$. Points $O_{1}$ and $O_{2}$ lie in the exterior of the triangle and are the centers of two circles with equal radii. The circle with center $O_{1}$ is tangent to the hypotenuse and to the extension of leg CA, the circle with center $O_{2}$ is tangent to the hypotenuse and to the extension of leg CB, and the circles are externally tangent to each other. The length of the radius of either circle can be expressed as $p/q$, where $p$ and $q$ are relatively prime positive integers. Find $p+q$.
2000 USA Team Selection Test, 2
Let $ ABCD$ be a cyclic quadrilateral and let $ E$ and $ F$ be the feet of perpendiculars from the intersection of diagonals $ AC$ and $ BD$ to $ AB$ and $ CD$, respectively. Prove that $ EF$ is perpendicular to the line through the midpoints of $ AD$ and $ BC$.
1997 Taiwan National Olympiad, 8
Let $O$ be the circumcenter and $R$ be the circumradius of an acute triangle $ABC$. Let $AO$ meet the circumcircle of $OBC$ again at $D$, $BO$ meet the circumcircle of $OCA$ again at $E$, and $CO$ meet the circumcircle of $OAB$ again at $F$. Show that $OD.OE.OF\geq 8R^{3}$.
2007 Peru IMO TST, 2
Let $ABC$ be a triangle such that $CA \neq CB$,
the points $A_{1}$ and $B_{1}$ are tangency points for the ex-circles relative to sides $CB$ and $CA$,
respectively, and $I$ the incircle.
The line $CI$ intersects the cincumcircle of the triangle $ABC$ in the point $P$.
The line that trough $P$ that is perpendicular to $CP$, intersects the line $AB$ in $Q$.
Prove that the lines $QI$ and $A_{1}B_{1}$ are parallels.
2019 Taiwan TST Round 3, 6
Given a triangle $ \triangle{ABC} $ with circumcircle $ \Omega $. Denote its incenter and $ A $-excenter by $ I, J $, respectively. Let $ T $ be the reflection of $ J $ w.r.t $ BC $ and $ P $ is the intersection of $ BC $ and $ AT $. If the circumcircle of $ \triangle{AIP} $ intersects $ BC $ at $ X \neq P $ and there is a point $ Y \neq A $ on $ \Omega $ such that $ IA = IY $. Show that $ \odot\left(IXY\right) $ tangents to the line $ AI $.
2012 Sharygin Geometry Olympiad, 20
Point $D$ lies on side $AB$ of triangle $ABC$. Let $\omega_1$ and $\Omega_1,\omega_2$ and $\Omega_2$ be the incircles and the excircles (touching segment $AB$) of triangles $ACD$ and $BCD.$ Prove that the common external tangents to $\omega_1$ and $\omega_2,$ $\Omega_1$ and $\Omega_2$ meet on $AB$.
2009 Miklós Schweitzer, 5
Let $ G$ be a finite non-commutative group of order $ t \equal{} 2^nm$, where $ n, m$ are positive and $ m$ is odd. Prove, that if the group contains an element of order $ 2^n$, then
(i) $ G$ is not simple;
(ii) $ G$ contains a normal subgroup of order $ m$.
2010 Indonesia TST, 3
Two parallel lines $r,s$ and two points $P \in r$ and $Q \in s$ are given in a plane. Consider all pairs of circles $(C_P, C_Q)$ in that plane such that $C_P$ touches $r$ at $P$ and $C_Q$ touches $s$ at $Q$ and which touch each other externally at some point $T$. Find the locus of $T$.
1996 Iran MO (3rd Round), 2
Let $ABCD$ be a parallelogram. Construct the equilateral triangle $DCE$ on the side $DC$ and outside of parallelogram. Let $P$ be an arbitrary point in plane of $ABCD$. Show that
\[PA+PB+AD \geq PE.\]
2007 China Team Selection Test, 1
Let $ ABC$ be a triangle. Circle $ \omega$ passes through points $ B$ and $ C.$ Circle $ \omega_{1}$ is tangent internally to $ \omega$ and also to sides $ AB$ and $ AC$ at $ T,\, P,$ and $ Q,$ respectively. Let $ M$ be midpoint of arc $ BC\, ($containing $ T)$ of $ \omega.$ Prove that lines $ PQ,\,BC,$ and $ MT$ are concurrent.
2010 Tournament Of Towns, 6
Quadrilateral $ABCD$ is circumscribed around the circle with centre $I$. Let points $M$ and $N$ be the midpoints of sides $AB$ and $CD$ respectively and let $\frac{IM}{AB} = \frac{IN}{CD}$. Prove that $ABCD$ is either a trapezoid or a parallelogram.
2010 Contests, 1
For all natural $n$, an $n$-staircase is a figure consisting of unit squares, with one square in the first row, two squares in the second row, and so on, up to $n$ squares in the $n^{th}$ row, such that all the left-most squares in each row are aligned vertically.
Let $f(n)$ denote the minimum number of square tiles requires to tile the $n$-staircase, where the side lengths of the square tiles can be any natural number. e.g. $f(2)=3$ and $f(4)=7$.
(a) Find all $n$ such that $f(n)=n$.
(b) Find all $n$ such that $f(n) = n+1$.
1997 Pre-Preparation Course Examination, 2
Two circles $O, O'$ meet each other at points $A, B$. A line from $A$ intersects the circle $O$ at $C$ and the circle $O'$ at $D$ ($A$ is between $C$ and $D$). Let $M,N$ be the midpoints of the arcs $BC, BD$, respectively (not containing $A$), and let $K$ be the midpoint of the segment $CD$. Show that $\angle KMN = 90^\circ$.
2006 Estonia National Olympiad, 4
In a triangle ABC with circumcentre O and centroid M, lines OM and AM are
perpendicular. Let AM intersect the circumcircle of ABC again at A′. Let lines BA′ and AC intersect at D and let lines CA′ and AB intersect at E. Prove that the circumcentre of triangle ADE lies on the circumcircle of ABC.
MathLinks Contest 7th, 2.3
Let $ ABC$ be a given triangle with the incenter $ I$, and denote by $ X$, $ Y$, $ Z$ the intersections of the lines $ AI$, $ BI$, $ CI$ with the sides $ BC$, $ CA$, and $ AB$, respectively. Consider $ \mathcal{K}_{a}$ the circle tangent simultanously to the sidelines $ AB$, $ AC$, and internally to the circumcircle $ \mathcal{C}(O)$ of $ ABC$, and let $ A^{\prime}$ be the tangency point of $ \mathcal{K}_{a}$ with $ \mathcal{C}$. Similarly, define $ B^{\prime}$, and $ C^{\prime}$.
Prove that the circumcircles of triangles $ AXA^{\prime}$, $ BYB^{\prime}$, and $ CZC^{\prime}$ all pass through two distinct points.
2011 Kazakhstan National Olympiad, 5
On the table lay a pencil, sharpened at one end. The student can rotate the pencil around one of its ends at $45^{\circ}$ clockwise or counterclockwise. Can the student, after a few turns of the pencil, go back to the starting position so that the sharpened end and the not sharpened are reversed?
2009 China Team Selection Test, 1
Given that points $ D,E$ lie on the sidelines $ AB,BC$ of triangle $ ABC$, respectively, point $ P$ is in interior of triangle $ ABC$ such that $ PE \equal{} PC$ and $ \bigtriangleup DEP\sim \bigtriangleup PCA.$ Prove that $ BP$ is tangent of the circumcircle of triangle $ PAD.$