This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

2007 Balkan MO Shortlist, C1

For a given positive integer $n >2$, let $C_{1},C_{2},C_{3}$ be the boundaries of three convex $n-$ gons in the plane , such that $C_{1}\cap C_{2}, C_{2}\cap C_{3},C_{1}\cap C_{3}$ are finite. Find the maximum number of points of the sets $C_{1}\cap C_{2}\cap C_{3}$.

2008 Tournament Of Towns, 7

Tags: geometry , angle
A convex quadrilateral $ABCD$ has no parallel sides. The angles between the diagonal $AC$ and the four sides are $55^o, 55^o, 19^o$ and $16^o$ in some order. Determine all possible values of the acute angle between $AC$ and $BD$.

VI Soros Olympiad 1999 - 2000 (Russia), 11.4

Let the line $L$ be perpendicular to the plane $P$. Three spheres touch each other in pairs so that each sphere touches the plane $P$ and the line $L$. The radius of the larger sphere is $1$. Find the minimum radius of the smallest sphere.

1966 IMO Shortlist, 28

In the plane, consider a circle with center $S$ and radius $1.$ Let $ABC$ be an arbitrary triangle having this circle as its incircle, and assume that $SA\leq SB\leq SC.$ Find the locus of [b]a.)[/b] all vertices $A$ of such triangles; [b]b.)[/b] all vertices $B$ of such triangles; [b]c.)[/b] all vertices $C$ of such triangles.

2015 Indonesia MO Shortlist, G4

Given an isosceles triangle $ABC$ with $AB = AC$, suppose $D$ is the midpoint of the $AC$. The circumcircle of the $DBC$ triangle intersects the altitude from $A$ at point $E$ inside the triangle $ABC$, and the circumcircle of the triangle $AEB$ cuts the side $BD$ at point $F$. If $CF$ cuts $AE$ at point $G$, prove that $AE = EG$.

1982 AMC 12/AHSME, 9

Tags: geometry
A vertical line divides the triangle with vertices $(0,0)$, $(1,1)$, and $(9,1)$ in the $xy\text{-plane}$ into two regions of equal area. The equation of the line is $x=$ $\textbf {(A) } 2.5 \qquad \textbf {(B) } 3.0 \qquad \textbf {(C) } 3.5 \qquad \textbf {(D) } 4.0\qquad \textbf {(E) } 4.5$

2009 Balkan MO Shortlist, G2

If $ABCDEF$ is a convex cyclic hexagon, then its diagonals $AD$, $BE$, $CF$ are concurrent if and only if $\frac{AB}{BC}\cdot \frac{CD}{DE}\cdot \frac{EF}{FA}=1$. [i]Alternative version.[/i] Let $ABCDEF$ be a hexagon inscribed in a circle. Then, the lines $AD$, $BE$, $CF$ are concurrent if and only if $AB\cdot CD\cdot EF=BC\cdot DE\cdot FA$.

Indonesia MO Shortlist - geometry, g8

$ABC$ is an acute triangle with $AB> AC$. $\Gamma_B$ is a circle that passes through $A,B$ and is tangent to $AC$ on $A$. Define similar for $ \Gamma_C$. Let $D$ be the intersection $\Gamma_B$ and $\Gamma_C$ and $M$ be the midpoint of $BC$. $AM$ cuts $\Gamma_C$ at $E$. Let $O$ be the center of the circumscibed circle of the triangle $ABC$. Prove that the circumscibed circle of the triangle $ODE$ is tangent to $\Gamma_B$.

2022-23 IOQM India, 3

In a trapezoid $ABCD$, the internal bisector of angle $A$ intersects the base $BC$(or its extension) at the point $E$. Inscribed in the triangle $ABE$ is a circle touching the side $AB$ at $M$ and side $BE$ at the point $P$. Find the angle $DAE$ in degrees, if $AB:MP=2$.

2011 AMC 12/AHSME, 22

Let $R$ be a square region and $n \ge 4$ an integer. A point $X$ in the interior of $R$ is called [i]n-ray partitional[/i] if there are $n$ rays emanating from $X$ that divide $R$ into $n$ triangles of equal area. How many points are 100-ray partitional but not 60-ray partitional? $\textbf{(A)}\ 1500 \qquad \textbf{(B)}\ 1560 \qquad \textbf{(C)}\ 2320 \qquad \textbf{(D)}\ 2480 \qquad \textbf{(E)}\ 2500$

2020 Balkan MO Shortlist, G2

Let $G, H$ be the centroid and orthocentre of $\vartriangle ABC$ which has an obtuse angle at $\angle B$. Let $\omega$ be the circle with diameter $AG$. $\omega$ intersects $\odot(ABC)$ again at $L \ne A$. The tangent to $\omega$ at $L$ intersects $\odot(ABC)$ at $K \ne L$. Given that $AG = GH$, prove $\angle HKG = 90^o$ . [i]Sam Bealing, United Kingdom[/i]

2010 Contests, 3

Two rectangles of unit area overlap to form a convex octagon. Show that the area of the octagon is at least $\dfrac {1} {2}$. [i]Kvant Magazine [/i]

2012 JBMO ShortLists, 1

Let $ABC$ be an equilateral triangle , and $P$ be a point on the circumcircle of the triangle but distinct from $A$ ,$B$ and $C$. The lines through $P$ and parallel to $BC$ , $CA$ , $AB$ intersect the lines $CA$ , $AB$ , $BC$ at $M$ , $N$ and $Q$ respectively .Prove that $M$ , $N$ and $Q$ are collinear .

2003 Bosnia and Herzegovina Team Selection Test, 4

In triangle $ABC$ $AD$ and $BE$ are altitudes. Let $L$ be a point on $ED$ such that $ED$ is orthogonal to $BL$. If $LB^2=LD\cdot LE$ prove that triangle $ABC$ is isosceles

Kyiv City MO 1984-93 - geometry, 1990.11.1

Prove that the sum of the distances from any point in space from the vertices of a cube with edge $a$ is not less than $4\sqrt3 a$.

2008 Puerto Rico Team Selection Test, 1

Given a $ 1 \times 25$ rectangle divided into $ 25$ "boxes" ($ 1 \times 1$), is it possible to write integers $ 1$ to $ 25$ so that the sum of any two adjacent "boxes" is a perfect square?

2001 Pan African, 3

Let $ABC$ be an equilateral triangle and let $P_0$ be a point outside this triangle, such that $\triangle{AP_0C}$ is an isoscele triangle with a right angle at $P_0$. A grasshopper starts from $P_0$ and turns around the triangle as follows. From $P_0$ the grasshopper jumps to $P_1$, which is the symmetric point of $P_0$ with respect to $A$. From $P_1$, the grasshopper jumps to $P_2$, which is the symmetric point of $P_1$ with respect to $B$. Then the grasshopper jumps to $P_3$ which is the symmetric point of $P_2$ with respect to $C$, and so on. Compare the distance $P_0P_1$ and $P_0P_n$. $n \in N$.

Denmark (Mohr) - geometry, 2013.2

The figure shows a rectangle, its circumscribed circle and four semicircles, which have the rectangle’s sides as diameters. Prove that the combined area of the four dark gray crescentshaped regions is equal to the area of the light gray rectangle. [img]https://1.bp.blogspot.com/-gojv6KfBC9I/XzT9ZMKrIeI/AAAAAAAAMVU/NB-vUldjULI7jvqiFWmBC_Sd8QFtwrc7wCLcBGAsYHQ/s0/2013%2BMohr%2Bp3.png[/img]

2020 Novosibirsk Oral Olympiad in Geometry, 6

In triangle $ABC$, point $M$ is the midpoint of $BC$, $P$ the point of intersection of the tangents at points $B$ and $C$ of the circumscribed circle of $ABC$, $N$ is the midpoint of the segment $MP$. The segment $AN$ meets the circumcircle $ABC$ at the point $Q$. Prove that $\angle PMQ = \angle MAQ$.

2022 Yasinsky Geometry Olympiad, 2

In the acute triangle $ABC$, the sum of the distances from the vertices $B$ and $C$ to of the orthocenter $H$ is equal to $4r,$ where $r$ is the radius of the circle inscribed in this triangle. Find the perimeter of triangle $ABC$ if it is known that $BC=a$. (Gryhoriy Filippovskyi)

2020 Greece Team Selection Test, 2

Given a triangle $ABC$ inscribed in circle $c(O,R)$ (with center $O$ and radius $R$) with $AB<AC<BC$ and let $BD$ be a diameter of the circle $c$. The perpendicular bisector of $BD$ intersects line $AC$ at point $M$ and line $AB$ at point $N$. Line $ND$ intersects the circle $c$ at point $T$. Let $S$ be the second intersection point of cicumcircles $c_1$ of triangle $OCM$, and $c_2$ of triangle $OAD$. Prove that lines $AD, CT$ and $OS$ pass through the same point.

2017 Sharygin Geometry Olympiad, P4

Tags: geometry
A triangle $ABC$ is given. Let $C\ensuremath{'}$ be the vertex of an isosceles triangle $ABC\ensuremath{'}$ with $\angle C\ensuremath{'} = 120^{\circ}$ constructed on the other side of $AB$ than $C$, and $B\ensuremath{'}$ be the vertex of an equilateral triangle $ACB\ensuremath{'}$ constructed on the same side of $AC$ as $ABC$. Let $K$ be the midpoint of $BB\ensuremath{'}$ Find the angles of triangle $KCC\ensuremath{'}$. [i]Proposed by A.Zaslavsky[/i]

2007 Sharygin Geometry Olympiad, 3

Given two circles intersecting at points $P$ and $Q$. Let C be an arbitrary point distinct from $P$ and $Q$ on the former circle. Let lines $CP$ and $CQ$ intersect again the latter circle at points A and B, respectively. Determine the locus of the circumcenters of triangles $ABC$.

2014 Belarus Team Selection Test, 1

Let $I$ be the incenter of a triangle $ABC$. The circle passing through $I$ and centered at $A$ meets the circumference of the triangle $ABC$ at points $M$ and $N$. Prove that the line $MN$ touches the incircle of the triangle $ABC$. (I. Kachan)

2008 China Team Selection Test, 1

Let $P$ be an arbitrary point inside triangle $ABC$, denote by $A_{1}$ (different from $P$) the second intersection of line $AP$ with the circumcircle of triangle $PBC$ and define $B_{1},C_{1}$ similarly. Prove that $\left(1 \plus{} 2\cdot\frac {PA}{PA_{1}}\right)\left(1 \plus{} 2\cdot\frac {PB}{PB_{1}}\right)\left(1 \plus{} 2\cdot\frac {PC}{PC_{1}}\right)\geq 8$.