This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

2014 Czech-Polish-Slovak Junior Match, 1

On the plane circles $k$ and $\ell$ are intersected at points $C$ and $D$, where circle $k$ passes through the center $L$ of circle $\ell$. The straight line passing through point $D$ intersects circles $k$ and $\ell$ for the second time at points $A$ and $B$ respectively in such a way that $D$ is the interior point of segment $AB$. Show that $AB = AC$.

2015 IMO, 4

Triangle $ABC$ has circumcircle $\Omega$ and circumcenter $O$. A circle $\Gamma$ with center $A$ intersects the segment $BC$ at points $D$ and $E$, such that $B$, $D$, $E$, and $C$ are all different and lie on line $BC$ in this order. Let $F$ and $G$ be the points of intersection of $\Gamma$ and $\Omega$, such that $A$, $F$, $B$, $C$, and $G$ lie on $\Omega$ in this order. Let $K$ be the second point of intersection of the circumcircle of triangle $BDF$ and the segment $AB$. Let $L$ be the second point of intersection of the circumcircle of triangle $CGE$ and the segment $CA$. Suppose that the lines $FK$ and $GL$ are different and intersect at the point $X$. Prove that $X$ lies on the line $AO$. [i]Proposed by Greece[/i]

2000 All-Russian Olympiad, 7

A quadrilateral $ABCD$ is circumscribed about a circle $\omega$. The lines $AB$ and $CD$ meet at $O$. A circle $\omega_1$ is tangent to side $BC$ at $K$ and to the extensions of sides $AB$ and $CD$, and a circle $\omega_2$ is tangent to side $AD$ at $L$ and to the extensions of sides $AB$ and $CD$. Suppose that points $O$, $K$, $L$ lie on a line. Prove that the midpoints of $BC$ and $AD$ and the center of $\omega$ also lie on a line.

2012 Belarus Team Selection Test, 1

Determine the greatest possible value of the constant $c$ that satisfies the following condition: for any convex heptagon the sum of the lengthes of all it’s diagonals is greater than $cP$, where $P$ is the perimeter of the heptagon. (I. Zhuk)

2023 Malaysian IMO Team Selection Test, 3

Tags: geometry
Let $ABC$ be an acute triangle with $AB\neq AC$. Let $D, E, F$ be the midpoints of the sides $BC$, $CA$, and $AB$ respectively, and $M, N$ be the midpoints of minor arc $BC$ not containing $A$ and major arc $BAC$ respectively. Suppose $W, X, Y, Z$ are the incenter, $D$-excenter, $E$-excenter, and $F$-excenter of triangle $DEF$ respectively. Prove that the circumcircles of the triangles $ABC$, $WNX$, $YMZ$ meet at a common point. [i]Proposed by Ivan Chan Kai Chin[/i]

2020 Turkey Team Selection Test, 7

Tags: geometry
$A_1,A_2,B_1,B_2,C_1,C_2$ are points on a circle such that $A_1A_2 \parallel B_1B_2 \parallel C_1C_2 $ . $M$ is a point on same circle $MA_1$ and $B_2C_2$ intersect at $X$ , $MB_1$ and $A_2C_2$ intersect at $Y$, $MC_1$ and $A_2B_2$ intersect at $Z$ .Prove that $X , Y ,Z$ are collinear.

2010 Contests, 2

In the accompanying figure , $y=f(x)$ is the graph of a one-to-one continuous function $f$ . At each point $P$ on the graph of $y=2x^2$ , assume that the areas $OAP$ and $OBP$ are equal . Here $PA,PB$ are the horizontal and vertical segments . Determine the function $f$. [asy] Label f; xaxis(0,60,blue); yaxis(0,60,blue); real f(real x) { return (x^2)/60; } draw(graph(f,0,53),red); label("$y=x^2$",(30,15),E); real f(real x) { return (x^2)/25; } draw(graph(f,0,38),red); label("$y=2x^2$",(37,37^2/25),E); real f(real x) { return (x^2)/10; } draw(graph(f,0,25),red); label("$y=f(x)$",(24,576/10),W); label("$O(0,0)$",(0,0),S); dot((20,400/25)); dot((20,400/60)); label("$P$",(20,400/25),E); label("$B$",(20,400/60),SE); dot(((4000/25)^(0.5),400/25)); label("$A$",((4000/25)^(0.5),400/25),W); draw((20,400/25)..((4000/25)^(0.5),400/25)); draw((20,400/25)..(20,400/60)); [/asy]

1994 Chile National Olympiad, 2

Show that it is possible to cut any triangle into several pieces, so that a rectangle is formed when they are joined together.

1999 Harvard-MIT Mathematics Tournament, 8

Tags: geometry
Squares $ABKL$, $BCMN$, $CAOP$ are drawn externally on the sides of a triangle $ABC$. The line segments $KL$, $MN$, $OP$, when extended, form a triangle $A'B'C'$. Find the area of $A'B'C'$ if $ABC$ is an equilateral triangle of side length $2$.

2013 ELMO Shortlist, 9

Let $ABCD$ be a cyclic quadrilateral inscribed in circle $\omega$ whose diagonals meet at $F$. Lines $AB$ and $CD$ meet at $E$. Segment $EF$ intersects $\omega$ at $X$. Lines $BX$ and $CD$ meet at $M$, and lines $CX$ and $AB$ meet at $N$. Prove that $MN$ and $BC$ concur with the tangent to $\omega$ at $X$. [i]Proposed by Allen Liu[/i]

MMATHS Mathathon Rounds, 2016

[u]Round 5[/u] [b]p13.[/b] Let $\{a\} _{n\ge 1}$ be an arithmetic sequence, with $a_ 1 = 0$, such that for some positive integers $k$ and $x$ we have $a_{k+1} = {k \choose x}$, $a_{2k+1} ={k \choose {x+1}}$ , and $a_{3k+1} ={k \choose {x+2}}$. Let $\{b\}_{n\ge 1}$ be an arithmetic sequence of integers with $b_1 = 0$. Given that there is some integer $m$ such that $b_m ={k \choose x}$, what is the number of possible values of $b_2$? [b]p14.[/b] Let $A = arcsin \left( \frac14 \right)$ and $B = arcsin \left( \frac17 \right)$. Find $\sin(A + B) \sin(A - B)$. [b]p15.[/b] Let $\{f_i\}^{9}_{i=1}$ be a sequence of continuous functions such that $f_i : R \to Z$ is continuous (i.e. each $f_i$ maps from the real numbers to the integers). Also, for all $i$, $f_i(i) = 3^i$. Compute $\sum^{9}_{k=1} f_k \circ f_{k-1} \circ ... \circ f_1(3^{-k})$. [u]Round 6[/u] [b]p16.[/b] If $x$ and $y$ are integers for which $\frac{10x^3 + 10x^2y + xy^3 + y^4}{203}= 1134341$ and $x - y = 1$, then compute $x + y$. [b]p17.[/b] Let $T_n$ be the number of ways that n letters from the set $\{a, b, c, d\}$ can be arranged in a line (some letters may be repeated, and not every letter must be used) so that the letter a occurs an odd number of times. Compute the sum $T_5 + T_6$. [b]p18.[/b] McDonald plays a game with a standard deck of $52$ cards and a collection of chips numbered $1$ to $52$. He picks $1$ card from a fully shuffled deck and $1$ chip from a bucket, and his score is the product of the numbers on card and on the chip. In order to win, McDonald must obtain a score that is a positive multiple of $6$. If he wins, the game ends; if he loses, he eats a burger, replaces the card and chip, shuffles the deck, mixes the chips, and replays his turn. The probability that he wins on his third turn can be written in the form $\frac{x^2 \cdot y}{z^3}$ such that $x, y$, and $z$ are relatively prime positive integers. What is $x + y + z$? (NOTE: Use Ace as $1$, Jack as $11$, Queen as $12$, and King as $13$) [u]Round 7[/u] [b]p19.[/b] Let $f_n(x) = ln(1 + x^{2^n}+ x^{2^{n+1}}+ x^{3\cdot 2^n})$. Compute $\sum^{\infty}_{k=0} f_{2k} \left( \frac12 \right)$. [b]p20.[/b] $ABCD$ is a quadrilateral with $AB = 183$, $BC = 300$, $CD = 55$, $DA = 244$, and $BD = 305$. Find $AC$. [b]p21.[/b] Define $\overline{xyz(t + 1)} = 1000x + 100y + 10z + t + 1$ as the decimal representation of a four digit integer. You are given that $3^x5^y7^z2^t = \overline{xyz(t + 1)}$ where $x, y, z$, and t are non-negative integers such that $t$ is odd and $0 \le x, y, z,(t + 1) \le 9$. Compute$3^x5^y7^z$ PS. You should use hide for answers. Rounds 1-4 have been posted [url=https://artofproblemsolving.com/community/c4h2782822p24445934]here[/url]. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2011 Finnish National High School Mathematics Competition, 3

Points $D$ and $E$ divides the base $BC$ of an isosceles triangle $ABC$ into three equal parts and $D$ is between $B$ and $E.$ Show that $\angle BAD<\angle DAE.$

2006 Denmark MO - Mohr Contest, 5

We consider an acute triangle $ABC$. The altitude from $A$ is $AD$, the altitude from $D$ in triangle $ABD$ is $DE,$ and the altitude from $D$ in triangle $ACD$ is $DF$. a) Prove that the triangles $ABC$ and $AF E$ are similar. b) Prove that the segment $EF$ and the corresponding segments constructed from the vertices $B$ and $C$ all have the same length.

2014 Saudi Arabia BMO TST, 4

Let $n$ be an integer greater than $2$. Consider a set of $n$ different points, with no three collinear, in the plane. Prove that we can label the points $P_1,~ P_2, \dots , P_n$ such that $P_1P_2 \dots P_n$ is not a self-intersecting polygon. ([i]A polygon is self-intersecting if one of its side intersects the interior of another side. The polygon is not necessarily convex[/i] )

2005 AMC 10, 7

Tags: geometry , ratio
A circle is inscribed in a square, then a square is inscribed in this circle, and finally, a circle is inscribed in this square. What is the ratio of the area of the smaller circle to the area of the larger square? $ \textbf{(A)}\ \frac{\pi}{16}\qquad \textbf{(B)}\ \frac{\pi}{8}\qquad \textbf{(C)}\ \frac{3\pi}{16}\qquad \textbf{(D)}\ \frac{\pi}{4}\qquad \textbf{(E)}\ \frac{\pi}{2}$

2016 Online Math Open Problems, 26

Tags: geometry
Let $ABC$ be a triangle with $BC=9$, $CA=8$, and $AB=10$. Let the incenter and incircle of $ABC$ be $I$ and $\gamma$, respectively, and let $N$ be the midpoint of major arc $BC$ of the cirucmcircle of $ABC$. Line $NI$ meets the circumcircle of $ABC$ a second time at $P$. Let the line through $I$ perpendicular to $AI$ meet segments $AB$, $AC$, and $AP$ at $C_1$, $B_1$, and $Q$, respectively. Let $B_2$ lie on segment $CQ$ such that line $B_1B_2$ is tangent to $\gamma$, and let $C_2$ lie on segment $BQ$ such that line $C_1C_2$ tangent to $\gamma$. The length of $B_2C_2$ can be expressed in the form $\frac{m}{n}$ for relatively prime positive integers $m$ and $n$. Determine $100m+n$. [i]Proposed by Vincent Huang[/i]

Ukrainian TYM Qualifying - geometry, XI.4

Chords $AB$ and $CD$, which do not intersect, are drawn in a circle. On the chord $AB$ or on its extension is taken the point $E$. Using a compass and construct the point $F$ on the arc $AB$ , such that $\frac{PE}{EQ} = \frac{m}{n}$, where $m,n$ are given natural numbers, $P$ is the point of intersection of the chord $AB$ with the chord $FC$, $Q$ is the point of intersection of the chord $AB$ with the chord $FD$. Consider cases where $E\in PQ$ and $E \notin PQ$.

2022 Greece Team Selection Test, 2

Consider triangle $ABC$ with $AB<AC<BC$, inscribed in triangle $\Gamma_1$ and the circles $\Gamma_2 (B,AC)$ and $\Gamma_2 (C,AB)$. A common point of circle $\Gamma_2$ and $\Gamma_3$ is point $E$, a common point of circle $\Gamma_1$ and $\Gamma_3$ is point $F$ and a common point of circle $\Gamma_1$ and $\Gamma_2$ is point $G$, where the points $E,F,G$ lie on the same semiplane defined by line $BC$, that point $A$ doesn't lie in. Prove that circumcenter of triangle $EFG$ lies on circle $\Gamma_1$. Note: By notation $\Gamma (K,R)$, we mean random circle $\Gamma$ has center $K$ and radius $R$.

2024 Junior Balkan Team Selection Tests - Romania, P2

Tags: geometry
Let $ABC$ be a triangle with $AB<AC$ and $\omega$ be its circumcircle. The tangent line to $\omega$ at $A$ intersects line $BC$ at $D$ and let $E$ be a point on $\omega$ such that $BE$ is parallel to $AD$. $DE$ intersects segment $AB$ and $\omega$ at $F$ and $G$, respectively. The circumcircle of $BGF$ intersects $BE$ at $N$. The line $NF$ intersects lines $AD$ and $EA$ at $S$ and $T$, respectively. Prove that $DGST$ is cyclic.

2010 Tournament Of Towns, 4

A rectangle is divided into $2\times 1$ and $1\times 2$ dominoes. In each domino, a diagonal is drawn, and no two diagonals have common endpoints. Prove that exactly two corners of the rectangle are endpoints of these diagonals.

2012 Junior Balkan Team Selection Tests - Romania, 4

The quadrilateral $ABCD$ is inscribed in a circle centered at $O$, and $\{P\} = AC \cap BD, \{Q\} = AB \cap CD$. Let $R$ be the second intersection point of the circumcircles of the triangles $ABP$ and $CDP$. a) Prove that the points $P, Q$, and $R$ are collinear. b) If $U$ and $V$ are the circumcenters of the triangles $ABP$, and $CDP$, respectively, prove that the points $U, R, O, V$ are concyclic.

1999 USAMO, 2

Let $ABCD$ be a cyclic quadrilateral. Prove that \[ |AB - CD| + |AD - BC| \geq 2|AC - BD|. \]

MMPC Part II 1958 - 95, 1972

[b]p1.[/b] In a given tetrahedron the sum of the measures of the three face angles at each of the vertices is $180$ degrees. Prove that all faces of the tetrahedron are congruent triangles. [img]https://cdn.artofproblemsolving.com/attachments/c/c/40f03324fd19f6a5e0a5e541153a2b38faac79.png[/img] [b]p2.[/b] The digital sum $D(n)$ of a positive integer $n$ is defined recursively by: $D(n) = n$ if $1 \le n \le 9$ $D(n) = D(a_0 + a_1 + ... + a_m)$ if $n>9$ where $a_0 , a_1 ,..,a_m$ are all the digits of $n$ expressed in base ten. (For example, $D(959) = D(26) = D(8) = 8$.) Prove that $D(n \times 1234)= D(n)$ fcr all positive integers $n$ . [b]p3.[/b] A right triangle has area $A$ and perimeter $P$ . Find the largest possible value for the positive constant $k$ such that for every such triangle, $P^2 \ge kA$ . [b]p4.[/b] In the accompanying diagram, $\overline{AB}$ is tangent at $A$ to a circle of radius $1$ centered at $O$ . The segment $\overline{AP}$ is equal in length to the arc $AB$ . Let $C$ be the point of intersection of the lines $AO$ and $PB$ . Determine the length of segment $\overline{AC}$ in terms of $a$ , where $a$ is the measure of $\angle AOB$ in radians. [img]https://cdn.artofproblemsolving.com/attachments/e/0/596e269a89a896365b405af7bc6ca47a1f7c57.png[/img] [b]p5.[/b] Let $a_1 = a > 0$ and $a_2 = b >a$. Consider the sequence $\{a_1,a_2,a_3,...\}$ of positive numbers defined by: $a_3=\sqrt{a_1a_2}$, $a_4=\sqrt{a_2a_3}$, $...$ and in general, $a_n=\sqrt{a_{n-2}a_{n-1}}$, for $n\ge 3$ . Develop a formula $a_n$ expressing in terms of $a$, $b$ and $n$ , and determine $\lim_{n \to \infty} a_n$. PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2021 Bolivian Cono Sur TST, 1

Inside a rhombus $ABCD$ with $\angle BAD=60$, points $F,H,G$ are choosen on lines $AD,DC,AC$ respectivily such that $DFGH$ is a paralelogram. Show that $BFH$ is a equilateral triangle.

ABMC Accuracy Rounds, 2021

[b]p1.[/b] There is a string of numbers $1234567891023...910134 ...91012...$ that concatenates the numbers $1$, $2$, $3$, $4$, $5$, $6$, $7$, $8$, $9$, $10$, then $2$, $3$, $4$, $5$, $6$, $7$, $8$, $9$, $10$, $1$, then $3$, $4$, $5$, $6$, $7$, $8$, $9$, $10$, $1$, $2$, and so on. After $10$, $1$, $2$, $3$, $4$, $5$, $6$, $7$, $8$, $9$, the string will be concatenated with $1$, $2$, $3$, $4$, $5$, $6$, $7$, $8$, $9$, $10$ again. What is the $2021$st digit? [b]p2.[/b] Bob really likes eating rice. Bob starts eating at the rate of $1$ bowl of rice per minute. Every minute, the number of bowls of rice Bob eats per minute increases by $1$. Given there are $78$ bowls of rice, find number of minutes Bob needs to finish all the rice. [b]p3.[/b] Suppose John has $4$ fair coins, one red, one blue, one yellow, one green. If John flips all $4$ coins at once, the probability he will land exactly $3$ heads and land heads on both the blue and red coins can be expressed as $\frac{a}{b}$ for relatively prime positive integers $a$, $b$, Find $a + b$. [b]p4.[/b] Three of the sides of an isosceles trapezoid have lengths $1$, $10$, $20$ Find the sum of all possible values of the fourth side. [b]p5.[/b] An number two-three-delightful if and only if it can be expressed as the product of $2$ consecutive integers larger than $1$ and as the product of $3$ consecutive integers larger than $1$. What is the smallest two-three-delightful number? [b]p6.[/b] There are $3$ students total in Justin's online chemistry class. On a $100$ point test, Justin's two classmates scored $4$ and $7$ points. The teacher notices that the class median score is equal to $gcd(x, 42)$, where the positive integer $x$ is Justin's score. Find the sum of all possible values of Justin's score. [b]p7.[/b] Eddie's gym class of $10$ students decides to play ping pong. However, there are only $4$ tables and only $2$ people can play at a table. If $8$ students are randomly selected to play and randomly assigned a partner to play against at a table, the probability that Eddie plays against Allen is $\frac{a}{b}$ for relatively prime positive integers $a$, $b$, Find $a + b$. [b]p8.[/b] Let $S$ be the set of integers $k$ consisting of nonzero digits, such that $300 < k < 400$ and $k - 300$ is not divisible by $11$. For each $k$ in $S$, let $A(k)$ denote the set of integers in $S$ not equal to $k$ that can be formed by permuting the digits of $k$. Find the number of integers $k$ in $S$ such that $k$ is relatively prime to all elements of $A(k)$. [b]p9.[/b] In $\vartriangle ABC$, $AB = 6$ and $BC = 5$. Point $D$ is on side $AC$ such that $BD$ bisects angle $\angle ABC$. Let $E$ be the foot of the altitude from $D$ to $AB$. Given $BE = 4$, find $AC^2$. [b]p10.[/b] For each integer $1 \le n \le 10$, Abe writes the number $2^n + 1$ on a blackboard. Each minute, he takes two numbers $a$ and $b$, erases them, and writes $\frac{ab-1}{a+b-2}$ instead. After $9$ minutes, there is one number $C$ left on the board. The minimum possible value of $C$ can be expressed as $\frac{p}{q}$ for relatively prime positive integers $p, q$. Find $p + q$. [b]p11.[/b] Estimation (Tiebreaker) Let $A$ and $B$ be the proportions of contestants that correctly answered Questions $9$ and $10$ of this round, respectively. Estimate $\left \lfloor \dfrac{1}{(AB)^2} \right \rfloor$ PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].