This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

2020 BMT Fall, 13

Tags: hexagon , area , geometry
Sheila is making a regular-hexagon-shaped sign with side length $ 1$. Let $ABCDEF$ be the regular hexagon, and let $R, S,T$ and U be the midpoints of $FA$, $BC$, $CD$ and $EF$, respectively. Sheila splits the hexagon into four regions of equal width: trapezoids $ABSR$, $RSCF$ , $FCTU$, and $UTDE$. She then paints the middle two regions gold. The fraction of the total hexagon that is gold can be written in the form $m/n$ , where m and n are relatively prime positive integers. Compute $m + n$. [img]https://services.artofproblemsolving.com/download.php?id=YXR0YWNobWVudHMvYS9lLzIwOTVmZmViZjU3OTMzZmRlMzFmMjM1ZWRmM2RkODMyMTA0ZjNlLnBuZw==&rn=MjAyMCBCTVQgSW5kaXZpZHVhbCAxMy5wbmc=[/img]

2008 Oral Moscow Geometry Olympiad, 2

The radii $r$ and $R$ of two non-intersecting circles are given. The common internal tangents of these circles are perpendicular. Find the area of the triangle bounded by these tangents, as well as the common external tangents.

2000 AIME Problems, 4

The diagram shows a rectangle that has been dissected into nine non-overlapping squares. Given that the width and the height of the rectangle are relatively prime positive integers, find the perimeter of the rectangle. [asy] defaultpen(linewidth(0.7)); draw((0,0)--(69,0)--(69,61)--(0,61)--(0,0));draw((36,0)--(36,36)--(0,36)); draw((36,33)--(69,33));draw((41,33)--(41,61));draw((25,36)--(25,61)); draw((34,36)--(34,45)--(25,45)); draw((36,36)--(36,38)--(34,38)); draw((36,38)--(41,38)); draw((34,45)--(41,45));[/asy]

2021 Ukraine National Mathematical Olympiad, 6

Circles $w_1$ and $w_2$ intersect at points $P$ and $Q$ and touch a circle $w$ with center at point $O$ internally at points $A$ and $B$, respectively. It is known that the points $A,B$ and $Q$ lie on one line. Prove that the point $O$ lies on the external bisector $\angle APB$. (Nazar Serdyuk)

Novosibirsk Oral Geo Oly VIII, 2017.4

Tags: perimeter , grid , geometry
On grid paper, mark three nodes so that in the triangle they formed, the sum of the two smallest medians equals to half-perimeter.

2008 Chile National Olympiad, 2

Let $ABC$ be right isosceles triangle with right angle in $A$. Given a point $P$ inside the triangle, denote by $a, b$ and $c$ the lengths of $PA, PB$ and $PC$, respectively. Prove that there is a triangle whose sides have a length of $a\sqrt2 , b$ and $c$.

1995 Denmark MO - Mohr Contest, 3

Tags: median , ratio , geometry
From the vertex $C$ in triangle $ABC$, draw a straight line that bisects the median from $A$. In what ratio does this line divide the segment $AB$? [img]https://1.bp.blogspot.com/-SxWIQ12DIvs/XzcJv5xoV0I/AAAAAAAAMY4/Ezfe8bd7W-Mfp2Qi4qE_gppbh9Fzvb4XwCLcBGAsYHQ/s0/1995%2BMohr%2Bp3.png[/img]

2025 Austrian MO National Competition, 2

Let $\triangle{ABC}$ be an acute triangle with $BC > AC$. Let $S$ be the centroid of triangle $ABC$ and let $F$ be the foot of the perpendicular from $C$ to side $AB$. The median $CS$ intersects the circumcircle $\gamma$ of triangle $\triangle{ABC}$ at a second point $P$. Let $M$ be the point where $CS$ intersects $AB$. The line $SF$ intersects the circle $\gamma$ at a point $Q$, such that $F$ lies between $S$ and $Q$. Prove that the points $M,P,Q$ and $F$ lie on a circle. [i](Karl Czakler)[/i]

2024 Thailand TSTST, 9

Let triangle \( ABC \) be an acute-angled triangle. Square \( AEFB \) and \( ADGC \) lie outside triangle \( ABC \). \( BD \) intersects \( CE \) at point \( H \), and \( BG \) intersects \( CF \) at point \( I \). The circumcircle of triangle \( BFI \) intersects the circumcircle of triangle \( CGI \) again at point \( K \). Prove that line segment \( HK \) bisects \( BC \).

2011 HMNT, 9

Tags: geometry
Let $ABC$ be a triangle with $AB = 13$, $BC = 14$, and $CA = 15$. Let $D$ be the foot of the altitude from $A$ to $BC$. The inscribed circles of triangles $ABD$ and $ACD$ are tangent to $AD$ at $P$ and $Q$, respectively, and are tangent to $BC$ at $X$ and $Y$ , respectively. Let $PX$ and $QY$ meet at $Z$. Determine the area of triangle $XY Z$.

2024 UMD Math Competition Part I, #25

Tags: geometry
An equilateral triangle $T$ and a circle $C$ are on the same plane. Suppose each side length of $T$ is $6\sqrt3$ and the radius of $C$ is $2.$ The distance between the centers of $T$ and $C$ is $15.$ For every two points $X$ on $T$ and $Y$ on $C,$ let $M(X, Y)$ be the midpoint of segment $\overline{XY}.$ The points $M(X, Y)$ as $X$ varies on $T$ and $Y$ varies on $C$ create a region whose area is $A.$ Find $A.$ \[\mathrm a. ~\pi + 14\sqrt3 \qquad \mathrm b. ~3\pi + 10\sqrt3 \qquad \mathrm c. ~4\pi+9\sqrt3 \qquad\mathrm d. ~\pi + 15\sqrt3 \qquad\mathrm e. ~4\pi+6\sqrt3\]

2020 Ukrainian Geometry Olympiad - December, 1

The three sides of the quadrilateral are equal, the angles between them are equal, respectively $90^o$ and $150^o$. Find the smallest angle of this quadrilateral in degrees.

2011 AMC 10, 14

A pair of standard 6-sided fair dice is rolled once. The sum of the numbers rolled determines the diameter of a circle. What is the probability that the numerical value of the area of the circle is less than the numerical value of the circle's circumference? $\textbf{(A)}\,\frac{1}{36} \qquad\textbf{(B)}\,\frac{1}{12} \qquad\textbf{(C)}\,\frac{1}{6} \qquad\textbf{(D)}\,\frac{1}{4} \qquad\textbf{(E)}\,\frac{5}{18}$

2000 May Olympiad, 5

A rectangle with area $n$ with $n$ positive integer, can be divided in $n$ squares(this squares are equal) and the rectangle also can be divided in $n + 98$ squares (the squares are equal). Find the sides of this rectangle

1965 IMO, 6

In a plane a set of $n\geq 3$ points is given. Each pair of points is connected by a segment. Let $d$ be the length of the longest of these segments. We define a diameter of the set to be any connecting segment of length $d$. Prove that the number of diameters of the given set is at most $n$.

2016 Novosibirsk Oral Olympiad in Geometry, 2

Tags: geometry , angle
Bisector of one angle of triangle $ABC$ is equal to the bisector of its external angle at the same vertex (see figure). Find the difference between the other two angles of the triangle. [img]https://cdn.artofproblemsolving.com/attachments/c/3/d2efeb65544c45a15acccab8db05c8314eb5f2.png[/img]

2007 Princeton University Math Competition, 3

Suppose that $ABCD$ is a rectangle with sides of length $12$ and $18$. Let $S$ be the region of points contained in $ABCD$ which are closer to the center of the rectangle than to any of its vertices. Find the area of $S$.

1994 Spain Mathematical Olympiad, 4

In a triangle $ABC$ with $ \angle A = 36^o$ and $AB = AC$, the bisector of the angle at $C$ meets the oposite side at $D$. Compute the angles of $\triangle BCD$. Express the length of side $BC$ in terms of the length $b$ of side $AC$ without using trigonometric functions.

Kyiv City MO Juniors 2003+ geometry, 2020.9.41

The points $A, B, C, D$ are selected on the circle as followed so that $AB = BC = CD$. Bisectors of $\angle ABD$ and $\angle ACD$ intersect at point $E$. Find $\angle ABC$, if it is known that $AE \parallel CD$.

2020 Purple Comet Problems, 11

Tags: geometry
Two circles have radius $9$, and one circle has radius $7$. Each circle is externally tangent to the other two circles, and each circle is internally tangent to two sides of an isosceles triangle, as shown. The sine of the base angle of the triangle is $\frac{m}{n}$ , where $m$ and $n$ are relatively prime positive integers. Find $m + n$. [img]https://cdn.artofproblemsolving.com/attachments/7/f/c34ff6bcaf6f07e6ba81a7d256e15a61f0e1fa.png[/img]

2003 AMC 12-AHSME, 11

A square and an equilateral triangle have the same perimeter. Let $ A$ be the area of the circle circumscribed about the square and $ B$ be the area of the circle circumscribed about the triangle. Find $ A/B$. $ \textbf{(A)}\ \frac{9}{16} \qquad \textbf{(B)}\ \frac{3}{4} \qquad \textbf{(C)}\ \frac{27}{32} \qquad \textbf{(D)}\ \frac{3\sqrt{6}}{8} \qquad \textbf{(E)}\ 1$

1996 Vietnam National Olympiad, 2

Given a trihedral angle Sxyz. A plane (P) not through S cuts Sx,Sy,Sz respectively at A,B,C. On the plane (P), outside triangle ABC, construct triangles DAB,EBC,FCA which are confruent to the triangles SAB,SBC,SCA respectively. Let (T) be the sphere lying inside Sxyz, but not inside the tetrahedron SABC, toucheing the planes containing the faces of SABC. Prove that (T) touches the plane (P) at the circumcenter of triangle DEF.

2013 Putnam, 6

Let $n\ge 1$ be an odd integer. Alice and Bob play the following game, taking alternating turns, with Alice playing first. The playing area consists of $n$ spaces, arranged in a line. Initially all spaces are empty. At each turn, a player either • places a stone in an empty space, or • removes a stone from a nonempty space $s,$ places a stone in the nearest empty space to the left of $s$ (if such a space exists), and places a stone in the nearest empty space to the right of $s$ (if such a space exists). Furthermore, a move is permitted only if the resulting position has not occurred previously in the game. A player loses if he or she is unable to move. Assuming that both players play optimally throughout the game, what moves may Alice make on her first turn?

2022 239 Open Mathematical Olympiad, 3

Let $A$ be a countable set, some of its countable subsets are selected such that; the intersection of any two selected subsets has at most one element. Find the smallest $k$ for which one can ensure that we can color elements of $A$ with $k$ colors such that each selected subsets exactly contain one element of one of the colors and an infinite number of elements of each of the other colors.

2013 Princeton University Math Competition, 2

Let $\gamma$ be the incircle of $\triangle ABC$ (i.e. the circle inscribed in $\triangle ABC$) and $I$ be the center of $\gamma$. Let $D$, $E$ and $F$ be the feet of the perpendiculars from $I$ to $BC$, $CA$, and $AB$ respectively. Let $D'$ be the point on $\gamma$ such that $DD'$ is a diameter of $\gamma$. Suppose the tangent to $\gamma$ through $D$ intersects the line $EF$ at $P$. Suppose the tangent to $\gamma$ through $D'$ intersects the line $EF$ at $Q$. Prove that $\angle PIQ + \angle DAD' = 180^{\circ}$.