This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

2014 Online Math Open Problems, 11

Given a triangle $ABC$, consider the semicircle with diameter $\overline{EF}$ on $\overline{BC}$ tangent to $\overline{AB}$ and $\overline{AC}$. If $BE=1$, $EF=24$, and $FC=3$, find the perimeter of $\triangle{ABC}$. [i]Proposed by Ray Li[/i]

2001 Brazil Team Selection Test, Problem 4

Let $ABC$ be a triangle with circumcenter $O$. Let $P$ and $Q$ be points on the segments $AB$ and $AC$, respectively, such that $BP : PQ : QC = AC : CB : BA$. Prove that the points $A$, $P$, $Q$ and $O$ lie on one circle. [i]Alternative formulation.[/i] Let $O$ be the center of the circumcircle of a triangle $ABC$. If $P$ and $Q$ are points on the sides $AB$ and $AC$, respectively, satisfying $\frac{BP}{PQ}=\frac{CA}{BC}$ and $\frac{CQ}{PQ}=\frac{AB}{BC}$, then show that the points $A$, $P$, $Q$ and $O$ lie on one circle.

2024 Ukraine National Mathematical Olympiad, Problem 3

Tags: geometry
Points $X$ and $Y$ are chosen inside an acute triangle $ABC$ so that: $$\angle AXB = \angle CYB = 180^\circ - \angle ABC, \text{ } \angle ABX = \angle CBY$$ Show that the points $X$ and $Y$ are equidistant from the center of the circumscribed circle of $\triangle ABC$. [i]Proposed by Anton Trygub[/i]

1991 Brazil National Olympiad, 2

$P$ is a point inside the triangle $ABC$. The line through $P$ parallel to $AB$ meets $AC$ $A_0$ and $BC$ at $B_0$. Similarly, the line through $P$ parallel to $CA$ meets $AB$ at $A_1$ and $BC$ at $C_1$, and the line through P parallel to BC meets $AB$ at $B_2$ and $AC$ at $C_2$. Find the point $P$ such that $A_0B_0 = A_1B_1 = A_2C_2$.

Cono Sur Shortlist - geometry, 2005.G4.2

Let $ABC$ be an acute-angled triangle and let $AN$, $BM$ and $CP$ the altitudes with respect to the sides $BC$, $CA$ and $AB$, respectively. Let $R$, $S$ be the pojections of $N$ on the sides $AB$, $CA$, respectively, and let $Q$, $W$ be the projections of $N$ on the altitudes $BM$ and $CP$, respectively. (a) Show that $R$, $Q$, $W$, $S$ are collinear. (b) Show that $MP=RS-QW$.

2011 ELMO Shortlist, 3

Let $ABC$ be a triangle. Draw circles $\omega_A$, $\omega_B$, and $\omega_C$ such that $\omega_A$ is tangent to $AB$ and $AC$, and $\omega_B$ and $\omega_C$ are defined similarly. Let $P_A$ be the insimilicenter of $\omega_B$ and $\omega_C$. Define $P_B$ and $P_C$ similarly. Prove that $AP_A$, $BP_B$, and $CP_C$ are concurrent. [i]Tom Lu.[/i]

2022 AMC 12/AHSME, 22

Let $c$ be a real number, and let $z_1, z_2$ be the two complex numbers satisfying the quadratic $z^2 - cz + 10 = 0$. Points $z_1, z_2, \frac{1}{z_1}$, and $\frac{1}{z_2}$ are the vertices of a (convex) quadrilateral $Q$ in the complex plane. When the area of $Q$ obtains its maximum value, $c$ is the closest to which of the following? $\textbf{(A)}~4.5\qquad\textbf{(B)}~5\qquad\textbf{(C)}~5.5\qquad\textbf{(D)}~6\qquad\textbf{(E)}~6.5$

2020 Yasinsky Geometry Olympiad, 6

In an isosceles triangle $ABC, I$ is the center of the inscribed circle, $M_1$ is the midpoint of the side $BC, K_2, K_3$ are the points of contact of the inscribed circle of the triangle with segments $AC$ and $AB$, respectively. The point $P$ lies on the circumcircle of the triangle $BCI$, and the angle $M_1PI$ is right. Prove that the lines $BC, PI, K_2K_3$ intersect at one point. (Mikhail Plotnikov)

2017 South East Mathematical Olympiad, 5

Let $ABCD$ be a cyclic quadrilateral inscribed in circle $O$, where $AC\perp BD$. $M,N$ are the midpoint of arc $ADC,ABC$. $DO$ and $AN$ intersect each other at $G$, the line passes through $G$ and parellel to $NC$ intersect $CD$ at $K$. Prove that $AK\perp BM$.

2022 VN Math Olympiad For High School Students, Problem 6

Let $ABC$ be a triangle with $\angle A,\angle B,\angle C <120^{\circ}$, $T$ is its [i]Fermat-Torricelli[/i] point. Let $G$ be the centroid of $\triangle ABC$. Prove that: the distances from $G$ to the perpendicular bisectors of $TA, TB, TC$ are the same.

2013 Today's Calculation Of Integral, 897

Find the volume $V$ of the solid formed by a rotation of the region enclosed by the curve $y=2^{x}-1$ and two lines $x=0,\ y=1$ around the $y$ axis.

2022 Bulgarian Spring Math Competition, Problem 9.2

Let $\triangle ABC$ have median $CM$ ($M\in AB$) and circumcenter $O$. The circumcircle of $\triangle AMO$ bisects $CM$. Determine the least possible perimeter of $\triangle ABC$ if it has integer side lengths.

2009 AIME Problems, 10

Four lighthouses are located at points $ A$, $ B$, $ C$, and $ D$. The lighthouse at $ A$ is $ 5$ kilometers from the lighthouse at $ B$, the lighthouse at $ B$ is $ 12$ kilometers from the lighthouse at $ C$, and the lighthouse at $ A$ is $ 13$ kilometers from the lighthouse at $ C$. To an observer at $ A$, the angle determined by the lights at $ B$ and $ D$ and the angle determined by the lights at $ C$ and $ D$ are equal. To an observer at $ C$, the angle determined by the lights at $ A$ and $ B$ and the angle determined by the lights at $ D$ and $ B$ are equal. The number of kilometers from $ A$ to $ D$ is given by $ \displaystyle\frac{p\sqrt{r}}{q}$, where $ p$, $ q$, and $ r$ are relatively prime positive integers, and $ r$ is not divisible by the square of any prime. Find $ p\plus{}q\plus{}r$,

2016 IMO Shortlist, G4

Let $ABC$ be a triangle with $AB = AC \neq BC$ and let $I$ be its incentre. The line $BI$ meets $AC$ at $D$, and the line through $D$ perpendicular to $AC$ meets $AI$ at $E$. Prove that the reflection of $I$ in $AC$ lies on the circumcircle of triangle $BDE$.

2016 Ecuador NMO (OMEC), 3

Let $A, B, C, D$ be four different points on a line $\ell$, such that $AB = BC = CD$. In one of the semiplanes determined by the line $\ell$, the points $P$ and $Q$ are chosen in such a way that the triangle $CPQ$ is equilateral with its vertices named clockwise. Let $M$ and $N$ be two points on the plane such that the triangles $MAP$ and $NQD$ are equilateral (the vertices are also named clockwise). Find the measure of the angle $\angle MBN$.

1997 APMO, 3

Let $ABC$ be a triangle inscribed in a circle and let \[ l_a = \frac{m_a}{M_a} \ , \ \ l_b = \frac{m_b}{M_b} \ , \ \ l_c = \frac{m_c}{M_c} \ , \] where $m_a$,$m_b$, $m_c$ are the lengths of the angle bisectors (internal to the triangle) and $M_a$, $M_b$, $M_c$ are the lengths of the angle bisectors extended until they meet the circle. Prove that \[ \frac{l_a}{\sin^2 A} + \frac{l_b}{\sin^2 B} + \frac{l_c}{\sin^2 C} \geq 3 \] and that equality holds iff $ABC$ is an equilateral triangle.

2023 Balkan MO Shortlist, G1

Tags: geometry
Let $ABCD$ be a circumscribed quadrilateral and let $X$ be the intersection point of its diagonals $AC$ and $BD$. Let $I_1, I_2, I_3, I_4$ be the incenters of $\triangle DXC$, $\triangle BXC$, $\triangle AXB$, and $\triangle DXA$, respectively. The circumcircle of $\triangle CI_1I_2$ intersects the sides $CB$ and $CD$ at points $P$ and $Q$, respectively. The circumcircle of $\triangle AI_3I_4$ intersects the sides $AB$ and $AD$ at points $M$ and $N$, respectively. Prove that $AM+CQ=AN+CP$

1958 Miklós Schweitzer, 4

Tags: geometry
[b]4.[/b] Let $P_1 P_2 P_3 P_4 P_5 P_6$ be a convex hexagon. Denote by $T$ its area and by $t$ the area of the triangle $Q_1 Q_2 Q_3$, where $Q_1,Q_2$ and $Q_3$ are the midpoints of $P_1P_4,P_2P_5,P_3P_6$ respectively. Prove that $t<\frac{1}{4}T$. [b](G. 3)[/b]

1949 Moscow Mathematical Olympiad, 157

a) Prove that if a planar polygon has several axes of symmetry, then all of them intersect at one point. b) A finite solid body is symmetric about two distinct axes. Describe the position of the symmetry planes of the body.

2025 Taiwan TST Round 2, G

Tags: geometry
Given a triangle $ABC$ with circumcircle $\Gamma$, and two arbitrary points $X, Y$ on $\Gamma$. Let $D$, $E$, $F$ be points on lines $BC$, $CA$, $AB$, respectively, such that $AD$, $BE$, and $CF$ concur at a point $P$. Let $U$ be a point on line $BC$ such that $X$, $Y$, $D$, $U$ are concyclic. Similarly, let $V$ be a point on line $CA$ such that $X$, $Y$, $E$, $V$ are concyclic, and let $W$ be a point on line $AB$ such that $X$, $Y$, $F$, $W$ are concyclic. Prove that $AU$, $BV$, $CW$ concur at a single point. [i]Proposed by chengbilly[/i]

1985 IMO Longlists, 66

Let $D$ be the interior of the circle $C$ and let $A \in C$. Show that the function $f : D \to \mathbb R, f(M)=\frac{|MA|}{|MM'|}$ where $M' = AM \cap C$, is strictly convex; i.e., $f(P) <\frac{f(M_1)+f(M_2)}{2}, \forall M_1,M_2 \in D, M_1 \neq M_2$ where $P$ is the midpoint of the segment $M_1M_2.$

2004 National Olympiad First Round, 13

If the tangents of all interior angles of a triangle are integers, what is the sum of these integers? $ \textbf{(A)}\ 4 \qquad\textbf{(B)}\ 5 \qquad\textbf{(C)}\ 6 \qquad\textbf{(D)}\ 9 \qquad\textbf{(E)}\ \text{None of above} $

1966 AMC 12/AHSME, 11

The sides of triangle $BAC$ are in the ratio $2: 3: 4$. $BD$ is the angle-bisector drawn to the shortest side $AC$, dividing it into segments $AD$ and $CD$. If the length of $AC$ is $10$, then the length of the longer segment of $AC$ is: $\text{(A)} \ 3\frac12 \qquad \text{(B)} \ 5 \qquad \text{(C)} \ 5\frac57 \qquad \text{(D)} \ 6 \qquad \text{(E)} \ 7\frac12$

1989 Bundeswettbewerb Mathematik, 3

A convex polygon is divided into finitely many quadrilaterals. Prove that at least one of these quadrilaterals must also be convex.

1989 IMO Longlists, 48

A bicentric quadrilateral is one that is both inscribable in and circumscribable about a circle, i.e. both the incircle and circumcircle exists. Show that for such a quadrilateral, the centers of the two associated circles are collinear with the point of intersection of the diagonals.