Found problems: 25757
2012 Turkey MO (2nd round), 6
Let $B$ and $D$ be points on segments $[AE]$ and $[AF]$ respectively. Excircles of triangles $ABF$ and $ADE$ touching sides $BF$ and $DE$ is the same, and its center is $I$. $BF$ and $DE$ intersects at $C$. Let $P_1, P_2, P_3, P_4, Q_1, Q_2, Q_3, Q_4$ be the circumcenters of triangles $IAB, IBC, ICD, IDA, IAE, IEC, ICF, IFA$ respectively.
[b]a) [/b] Show that points $P_1, P_2, P_3, P_4$ concylic and points $Q_1, Q_2, Q_3, Q_4$ concylic.
[b]b) [/b] Denote centers of theese circles as $O_1$ and $O_2$. Prove that $O_1, O_2$ and $I$ are collinear.
Indonesia Regional MO OSP SMA - geometry, 2006.1
Suppose triangle $ABC$ is right-angled at $B$. The altitude from $B$ intersects the side $AC$ at point $D$. If points $E$ and $F$ are the midpoints of $BD$ and $CD$, prove that $AE \perp BF$.
2019 Belarusian National Olympiad, 11.6
The diagonals of the inscribed quadrilateral $ABCD$ intersect at the point $O$. The points $P$, $Q$, $R$, and $S$ are the feet of the perpendiculars from $O$ to the sides $AB$, $BC$, $CD$, and $DA$, respectively.
Prove the inequality $BD\ge SP+QR$.
[i](A. Naradzetski)[/i]
1994 Moldova Team Selection Test, 3
Triangles $MAB{}$ and $MA_1B_1{}$ are similar and have the same orientation. Prove that the circumcircles of these triangles cointain the intersection point of lines $AA_1{}$ and $BB_1{}$.
2022 Dutch IMO TST, 4
Let $ABC$ be a triangle with a right angle at $C$. Let $I$ be the incentre of triangle $ABC$, and let $D$ be the foot of the altitude from $C$ to $AB$. The incircle $\omega$ of triangle $ABC$ is tangent to sides $BC$, $CA$, and $AB$ at $A_1$, $B_1$, and $C_1$, respectively. Let $E$ and $F$ be the reflections of $C$ in lines $C_1A_1$ and $C_1B_1$, respectively. Let $K$ and $L$ be the reflections of $D$ in lines $C_1A_1$ and $C_1B_1$, respectively.
Prove that the circumcircles of triangles $A_1EI$, $B_1FI$, and $C_1KL$ have a common point.
1990 AMC 8, 24
Three $ \Delta $'s and a $ \diamondsuit $ will balance nine $ \bullet $'s. One $ \Delta $ will balance a $ \diamondsuit $ and a $ \bullet $.
[asy]
unitsize(5.5);
fill((0,0)--(-4,-2)--(4,-2)--cycle,black);
draw((-12,2)--(-12,0)--(12,0)--(12,2));
draw(ellipse((-12,5),8,3)); draw(ellipse((12,5),8,3));
label("$\Delta \hspace{2 mm}\Delta \hspace{2 mm}\Delta \hspace{2 mm}\diamondsuit $",(-12,6.5),S);
label("$\bullet \hspace{2 mm}\bullet \hspace{2 mm}\bullet \hspace{2 mm} \bullet $",(12,5.2),N);
label("$\bullet \hspace{2 mm}\bullet \hspace{2 mm}\bullet \hspace{2 mm}\bullet \hspace{2 mm}\bullet $",(12,5.2),S);
fill((44,0)--(40,-2)--(48,-2)--cycle,black);
draw((34,2)--(34,0)--(54,0)--(54,2));
draw(ellipse((34,5),6,3)); draw(ellipse((54,5),6,3));
label("$\Delta $",(34,6.5),S);
label("$\bullet \hspace{2 mm}\diamondsuit $",(54,6.5),S);[/asy]
How many $ \bullet $'s will balance the two $ \diamondsuit $'s in this balance?
[asy]
unitsize(5.5);
fill((0,0)--(-4,-2)--(4,-2)--cycle,black);
draw((-12,4)--(-12,2)--(12,-2)--(12,0));
draw(ellipse((-12,7),6.5,3)); draw(ellipse((12,3),6.5,3));
label("$?$",(-12,8.5),S);
label("$\diamondsuit \hspace{2 mm}\diamondsuit $",(12,4.5),S);[/asy]
$ \text{(A)}\ 1\qquad\text{(B)}\ 2\qquad\text{(C)}\ 3\qquad\text{(D)}\ 4\qquad\text{(E)}\ 5 $
2000 Tuymaada Olympiad, 7
Every two of five regular pentagons on the plane have a common point.
Is it true that some of these pentagons have a common point?
2021 Saudi Arabia JBMO TST, 2
In a triangle $ABC$, let $K$ be a point on the median $BM$ such that $CM = CK$. It turned out that $\angle CBM = 2\angle ABM$. Show that $BC = KM$.
2018 Romania National Olympiad, 3
On the sides $[AB]$ and $[BC]$ of the parallelogram $ABCD$ are constructed the equilateral triangles $ABE$ and $BCF,$ so that the points $D$ and $E$ are on the same side of the line $AB$, and $F$ and $D$ on different sides of the line $BC$. If the points $E,D$ and $F$ are collinear, then prove that $ABCD$ is rhombus.
2007 Tournament Of Towns, 2
Let us call a triangle “almost right angle triangle” if one of its angles differs from $90^\circ$ by no more than $15^\circ$. Let us call a triangle “almost isosceles triangle” if two of its angles differs from each other by no more than $15^\circ$. Is it true that that any acute triangle is either “almost right angle triangle” or “almost isosceles triangle”?
[i](2 points)[/i]
Kyiv City MO Juniors 2003+ geometry, 2021.9.5
Let $BM$ be the median of the triangle $ABC$, in which $AB> BC$. Point $P$ is chosen so that $AB \parallel PC$ and$ PM \perp BM$. The point $Q$ is chosen on the line $BP$ so that $\angle AQC = 90^o$, and the points $B$ and $Q$ lie on opposite sides of the line $AC$. Prove that $AB = BQ$.
(Mikhail Standenko)
2017 Brazil Team Selection Test, 3
Let $ABCD$ be a convex quadrilateral and let $P$ and $Q$ be variable points inside this quadrilateral so that $\angle APB=\angle CPD=\angle AQB=\angle CQD$. Prove that the lines $PQ$ obtained in this way all pass through a fixed point , or they are all parallel.
2017 BMT Spring, 2
Let $S$ be the set of points $A$ in the xy-plane such that the four points $A$, $(2, 3)$, $(-1, 0)$, and $(0, 6)$ form the vertices of a parallelogram. Let $P$ be the convex polygon whose vertices are the points in $S$. What is the area of $P$?
1983 Czech and Slovak Olympiad III A, 2
Given a triangle $ABC$, prove that for every inner point $P$ of the side $AB$ the inequality $$PC\cdot AB<PA\cdot BC+PB\cdot AC$$ holds.
2002 National Olympiad First Round, 1
Let $C', A', B'$ be the midpoints of sides $[AB]$, $[BC]$, $[CA]$ of $\triangle ABC$, respectively. Let $H$ be the foot of perpendicular from $A$ to $BC$. If $|A'C'| = 6$, what is $|B'H|$?
$
\textbf{a)}\ 5
\qquad\textbf{b)}\ 6
\qquad\textbf{c)}\ 5\sqrt 2
\qquad\textbf{d)}\ 6\sqrt 2
\qquad\textbf{e)}\ 7
$
2016 Postal Coaching, 3
Four points lie on a plane such that no three of them are collinear. Consider the four triangles formed by taking any three points at a time. If the inradii of these four triangles are all equal, prove that the four triangles are congruent.
2002 Bundeswettbewerb Mathematik, 3
Given a convex polyhedron with an even number of edges.
Prove that we can attach an arrow to each edge, such that for every vertex of the polyhedron, the number of the arrows ending in this vertex is even.
2024 District Olympiad, P1
Let $ABCD$ be a convex quadrilateral whose diagonals intersect at $O.$ Given that \[\overrightarrow{AB}+\overrightarrow{AD}+\overrightarrow{AO}=\overrightarrow{BC}+\overrightarrow{DC}+\overrightarrow{OC},\]prove that $ABCD$ is a parallelogram.
1998 Tournament Of Towns, 2
A square of side $1$ is divided into rectangles . We choose one of the two smaller sides of each rectangle (if the rectangle is a square, then we choose any of the four sides) . Prove that the sum of the lengths of all the chosen sides is at least $1$ .
(Folklore)
1975 Chisinau City MO, 94
A straight line $\ell$ and a point $A$ outside of it are given on the plane. Find the locus of the vertices $C$ of the equilateral triangle $ABC$, the vertex $B$ of which lies on the straight line $\ell$.
2022 Mexican Girls' Contest, 8
Let $n$ be a positive integer. Consider a figure of a equilateral triangle of side $n$ and splitted in $n^2$ small equilateral triangles of side $1$. One will mark some of the $1+2+\dots+(n+1)$ vertices of the small triangles, such that for every integer $k\geq 1$, there is [b]not[/b] any trapezoid(trapezium), whose the sides are $(1,k,1,k+1)$, with all the vertices marked. Furthermore, there are [b]no[/b] small triangle(side $1$) have your three vertices marked. Determine the greatest quantity of marked vertices.
2006 IMO Shortlist, 8
Let $ABCD$ be a convex quadrilateral. A circle passing through the points $A$ and $D$ and a circle passing through the points $B$ and $C$ are externally tangent at a point $P$ inside the quadrilateral. Suppose that \[\angle{PAB}+\angle{PDC}\leq 90^\circ\qquad\text{and}\qquad\angle{PBA}+\angle{PCD}\leq 90^\circ.\] Prove that $AB+CD \geq BC+AD$.
[i]Proposed by Waldemar Pompe, Poland[/i]
2017 Yasinsky Geometry Olympiad, 3
In a circle, let $AB$ and $BC$ be chords , with $AB =\sqrt3, BC =3\sqrt3, \angle ABC =60^o$. Find the length of the circle chord that divides angle $ \angle ABC$ in half.
2007 Sharygin Geometry Olympiad, 5
Each edge of a convex polyhedron is shifted such that the obtained edges form the frame of another convex polyhedron. Are these two polyhedra necessarily congruent?
2011 Tournament of Towns, 3
Three pairwise intersecting rays are given. At some point in time not on every ray from its beginning a point begins to move with speed. It is known that these three points form a triangle at any time, and the center of the circumscribed circle of this the triangle also moves uniformly and on a straight line. Is it true, that all these triangles are similar to each other?