This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

2017 Iran Team Selection Test, 3

In triangle $ABC$ let $I_a$ be the $A$-excenter. Let $\omega$ be an arbitrary circle that passes through $A,I_a$ and intersects the extensions of sides $AB,AC$ (extended from $B,C$) at $X,Y$ respectively. Let $S,T$ be points on segments $I_aB,I_aC$ respectively such that $\angle AXI_a=\angle BTI_a$ and $\angle AYI_a=\angle CSI_a$.Lines $BT,CS$ intersect at $K$. Lines $KI_a,TS$ intersect at $Z$. Prove that $X,Y,Z$ are collinear. [i]Proposed by Hooman Fattahi[/i]

2021 Taiwan TST Round 3, 2

Let $ABC$ be a triangle with incenter $I$ and circumcircle $\Gamma$. Circles $\omega_{B}$ passing through $B$ and $\omega_{C}$ passing through $C$ are tangent at $I$. Let $\omega_{B}$ meet minor arc $AB$ of $\Gamma$ at $P$ and $AB$ at $M\neq B$, and let $\omega_{C}$ meet minor arc $AC$ of $\Gamma$ at $Q$ and $AC$ at $N\neq C$. Rays $PM$ and $QN$ meet at $X$. Let $Y$ be a point such that $YB$ is tangent to $\omega_{B}$ and $YC$ is tangent to $\omega_{C}$. Show that $A,X,Y$ are collinear.

2018 India IMO Training Camp, 1

Tags: geometry
Let $\Delta ABC$ be an acute triangle. $D,E,F$ are the touch points of incircle with $BC,CA,AB$ respectively. $AD,BE,CF$ intersect incircle at $K,L,M$ respectively. If,$$\sigma = \frac{AK}{KD} + \frac{BL}{LE} + \frac{CM}{MF}$$ $$\tau = \frac{AK}{KD}.\frac{BL}{LE}.\frac{CM}{MF}$$ Then prove that $\tau = \frac{R}{16r}$. Also prove that there exists integers $u,v,w$ such that, $uvw \neq 0$, $u\sigma + v\tau +w=0$.

2012 Sharygin Geometry Olympiad, 7

A convex pentagon $P $ is divided by all its diagonals into ten triangles and one smaller pentagon $P'$. Let $N$ be the sum of areas of five triangles adjacent to the sides of $P$ decreased by the area of $P'$. The same operations are performed with the pentagon $P'$, let $N'$ be the similar difference calculated for this pentagon. Prove that $N > N'$. (A.Belov)

2012 Iran MO (3rd Round), 6

[b]a)[/b] Prove that $a>0$ exists such that for each natural number $n$, there exists a convex $n$-gon $P$ in plane with lattice points as vertices such that the area of $P$ is less than $an^3$. [b]b)[/b] Prove that there exists $b>0$ such that for each natural number $n$ and each $n$-gon $P$ in plane with lattice points as vertices, the area of $P$ is not less than $bn^2$. [b]c)[/b] Prove that there exist $\alpha,c>0$ such that for each natural number $n$ and each $n$-gon $P$ in plane with lattice points as vertices, the area of $P$ is not less than $cn^{2+\alpha}$. [i]Proposed by Mostafa Eynollahzade[/i]

2001 District Olympiad, 3

Consider an inscriptible polygon $ABCDE$. Let $H_1,H_2,H_3,H_4,H_5$ be the orthocenters of the triangles $ABC,BCD,CDE,DEA,EAB$ and let $M_1,M_2,M_3,M_4,M_5$ be the midpoints of $DE,EA,AB,BC$ and $CD$, respectively. Prove that the lines $H_1M_1,H_2M_2,H_3M_3,H_4M_4,H_5M_5$ have a common point. [i]Dinu Serbanescu[/i]

1987 Federal Competition For Advanced Students, P2, 5

Tags: geometry
Let $ P$ be a point in the interior of a convex $ n$-gon $ A_1 A_2 ... A_n$ $ (n \ge 3)$. Show that among the angles $ \beta _{ij}\equal{}\angle A_i P A_j,1 \le i \le n$, there are at least $ n\minus{}1$ angles satisfying $ 90^{\circ} \le \beta_{ij} \le 180^{\circ}$.

1968 Spain Mathematical Olympiad, 8

We will assume that the sides of a square are reflective and we will designate them with the names of the four cardinal points. Marking a point on the side $N$ , determine in which direction a ray of light should exit (into the interior of the square) so that it returns to it after having undergone $n$ reflections on the side $E$ , another $n$ on the side $W$ , $m$ on the $S$ and $m - 1$ on the $N$, where $n$ and $m$ are known natural numbers. What happens if m and $n$ are not prime to each other? Calculate the length of the light ray considered as a function of $m$ and $n$, and of the length of the side of the square.

1956 Moscow Mathematical Olympiad, 334

a) Points $A_1, A_2, A_3, A_4, A_5, A_6$ divide a circle of radius $1$ into six equal arcs. Ray $\ell_1$ from $A_1$ connects $A_1$ with $A_2$, ray $\ell_2$ from $A_2$ connects $A_2$ with $A_3$, and so on, ray $\ell_6$ from $A_6$ connects $A_6$ with $A_1$. From a point $B_1$ on $\ell_1$ the perpendicular is drawn on $\ell_6$, from the foot of this perpendicular another perpendicular is drawn on $\ell_5$, and so on. Let the foot of the $6$-th perpendicular coincide with $B_1$. Find the length of segment $A_1B_1$. b) Find points $B_1, B_2,... , B_n$ on the extensions of sides $A_1A_2, A_2A_3,... , A_nA_1$ of a regular $n$-gon $A_1A_2...A_n$ such that $B_1B_2 \perp A_1A_2$, $B_2B_3 \perp A_2A_3$,$ . . . $, $B_nB_1 \perp A_nA_1$.

2008 ITAMO, 1

Let $ ABCDEFGHILMN$ be a regular dodecagon, let $ P$ be the intersection point of the diagonals $ AF$ and $ DH$. Let $ S$ be the circle which passes through $ A$ and $ H$, and which has the same radius of the circumcircle of the dodecagon, but is different from the circumcircle of the dodecagon. Prove that: 1. $ P$ lies on $ S$ 2. the center of $ S$ lies on the diagonal $ HN$ 3. the length of $ PE$ equals the length of the side of the dodecagon

1997 Moldova Team Selection Test, 2

In a convex pentagon every diagonal is parallel to one side. Show that the ratios between the lengths of diagonals and the sides parallel to them are equal and find their value.

2004 District Olympiad, 3

On the tetrahedron $ ABCD $ make the notation $ M,N,P,Q, $ for the midpoints of $ AB,CD,AC, $ respectively, $ BD. $ Additionally, we know that $ MN $ is the common perpendicular of $ AB,CD, $ and $ PQ $ is the common perpendicular of $ AC,BD. $ Show that $ AB=CD, BC=DA, AC=BD. $

1972 Miklós Schweitzer, 8

Given four points $ A_1,A_2,A_3,A_4$ in the plane in such a way that $ A_4$ is the centroid of the $ \bigtriangleup A_1A_2A_3$, find a point $ A_5$ in the plane that maximizes the ratio \[ \frac{\min_{1 \leq i < j < k \leq 5}T(A_iA_jA_k)}{\max_{1 \leq i < j < k \leq 5}T(A_iA_jA_k)}.\] ($ T(ABC)$ denotes the area of the triangle $ \bigtriangleup ABC.$ ) [i]J. Suranyi[/i]

2010 Ukraine Team Selection Test, 2

Let $ABCD$ be a quadrilateral inscribled in a circle with the center $O, P$ be the point of intersection of the diagonals $AC$ and $BD$, $BC\nparallel AD$. Rays $AB$ and $DC$ intersect at the point $E$. The circle with center $I$ inscribed in the triangle $EBC$ touches $BC$ at point $T_1$. The $E$-excircle with center $J$ in the triangle $EAD$ touches the side $AD$ at the point T$_2$. Line $IT_1$ and $JT_2$ intersect at $Q$. Prove that the points $O, P$, and $Q$ lie on a straight line.

2016 Oral Moscow Geometry Olympiad, 4

Let $M$ and $N$ be the midpoints of the hypotenuse $AB$ and the leg $BC$ of a right triangles $ABC$ respectively. The excircle of the triangle $ACM$ touches the side $AM$ at point $Q$, and line $AC$ at point $P$. Prove that points $P, Q$ and $N$ lie on one straight line.

2022 Tuymaada Olympiad, 2

Tags: geometry
Two circles $w_{1}$ and $w_{2}$ of different radii touch externally at $L$. A line touches $w_{1}$ at $A$ and $w_{2}$ at $B$ (the points $A$ and $B$ are different from $L$). A point $X$ is chosen in the plane. $Y$ and $Z$ are the second points of intersection of the lines $XA$ and $XB$ with $w_{1}$ and $w_{2}$ respectively. Prove that all $X$ such that $AB||Y Z$ belong to one circle.

Novosibirsk Oral Geo Oly VIII, 2021.7

Two congruent rectangles are located as shown in the figure. Find the area of the shaded part. [img]https://cdn.artofproblemsolving.com/attachments/2/e/10b164535ab5b3a3b98ce1a0b84892cd11d76f.png[/img]

2010 Indonesia TST, 1

Let $ ABCD$ be a trapezoid such that $ AB \parallel CD$ and assume that there are points $ E$ on the line outside the segment $ BC$ and $ F$ on the segment $ AD$ such that $ \angle DAE \equal{} \angle CBF$. Let $ I,J,K$ respectively be the intersection of line $ EF$ and line $ CD$, the intersection of line $ EF$ and line $ AB$, and the midpoint of segment $ EF$. Prove that $ K$ is on the circumcircle of triangle $ CDJ$ if and only if $ I$ is on the circumcircle of triangle $ ABK$. [i]Utari Wijayanti, Bandung[/i]

2003 Czech-Polish-Slovak Match, 4

Tags: geometry
Point $P$ lies on the median from vertex $C$ of a triangle $ABC$. Line $AP$ meets $BC$ at $X$, and line $BP$ meets $AC$ at $Y$ . Prove that if quadrilateral $ABXY$ is cyclic, then triangle $ABC$ is isosceles.

2020 Purple Comet Problems, 30

Four small spheres each with radius $6$ are each internally tangent to a large sphere with radius $17$. The four small spheres form a ring with each of the four spheres externally tangent to its two neighboring small spheres. A sixth intermediately sized sphere is internally tangent to the large sphere and externally tangent to each of the four small spheres. Its radius is $\frac{m}{n}$ , where m and n are relatively prime positive integers. Find $m + n$. [img]https://cdn.artofproblemsolving.com/attachments/7/2/25955cd6f22bc85f2f3c5ba8cd1ee0821c9d50.png[/img]

1963 AMC 12/AHSME, 40

If $x$ is a number satisfying the equation $\sqrt[3]{x+9}-\sqrt[3]{x-9}=3$, then $x^2$ is between: $\textbf{(A)}\ 55\text{ and }65 \qquad \textbf{(B)}\ 65\text{ and }75\qquad \textbf{(C)}\ 75\text{ and }85 \qquad \textbf{(D)}\ 85\text{ and }95 \qquad \textbf{(E)}\ 95\text{ and }105$

Cono Sur Shortlist - geometry, 2020.G3.3

Let $ABC$ be an acute triangle such that $AC<BC$ and $\omega$ its circumcircle. $M$ is the midpoint of $BC$. Points $F$ and $E$ are chosen in $AB$ and $BC$, respectively, such that $AC=CF$ and $EB=EF$. The line $AM$ intersects $\omega$ in $D\neq A$. The line $DE$ intersects the line $FM$ in $G$. Prove that $G$ lies on $\omega$.

2020 Macedonia Additional BMO TST, 2

Let $ABCD$ be a convex quadrilateral. On the sides $AB$ and $CD$ there are interior points $K$ and $L$, respectively, such that $\angle BAL = \angle CDK$. Prove that the following statements are equivalent: $i) \angle BLA= \angle CKD$ $ii) AD \parallel BC $

2020 Bosnia and Herzegovina Junior BMO TST, 3

The angle bisector of $\angle ABC$ of triangle $ABC$ ($AB>BC$) cuts the circumcircle of that triangle in $K$. The foot of the perpendicular from $K$ to $AB$ is $N$, and $P$ is the midpoint of $BN$. The line through $P$ parallel to $BC$ cuts line $BK$ in $T$. Prove that the line $NT$ passes through the midpoint of $AC$.

2017 Dutch IMO TST, 4

Let $n \geq 2$ be an integer. Find the smallest positive integer $m$ for which the following holds: given $n$ points in the plane, no three on a line, there are $m$ lines such that no line passes through any of the given points, and for all points $X \neq Y$ there is a line with respect to which $X$ and $Y$ lie on opposite sides