Found problems: 25757
2014 Math Prize For Girls Problems, 11
Let $R$ be the set of points $(x, y)$ such that $\lfloor x^2 \rfloor = \lfloor y \rfloor$ and $\lfloor y^2 \rfloor = \lfloor x \rfloor$. Compute the area of region $R$. Recall that $\lfloor z \rfloor$ is the greatest integer that is less than or equal to $z$.
1991 China Team Selection Test, 3
All edges of a polyhedron are painted with red or yellow. For an angle of a facet, if the edges determining it are of different colors, then the angle is called [i]excentric[/i]. The[i] excentricity [/i]of a vertex $A$, namely $S_A$, is defined as the number of excentric angles it has. Prove that there exist two vertices $B$ and $C$ such that $S_B + S_C \leq 4$.
2020 BMT Fall, 11
Equilateral triangle $ABC$ has side length $2$. A semicircle is drawn with diameter $BC$ such that it lies outside the triangle, and minor arc $BC$ is drawn so that it is part of a circle centered at $A$. The area of the “lune” that is inside the semicircle but outside sector $ABC$ can be expressed in the form $\sqrt{p}-\frac{q\pi}{r}$, where $p, q$, and $ r$ are positive integers such that $q$ and $r$ are relatively prime. Compute $p + q + r$.
[img]https://cdn.artofproblemsolving.com/attachments/7/7/f349a807583a83f93ba413bebf07e013265551.png[/img]
2016 APMC, 2
Let $ABC$ be a triangle with incenter $I$, and suppose that $AI$, $BI$, and $CI$ intersect $BC$, $CA$, and $AB$ at $D$, $E$, and $F$, respectively. Let the circumcircles of $BDF$ and $CDE$ intersect at $D$ and $P$, and let $H$ be the orthocenter of $DEF$. Prove that $HI=HP$.
1989 AIME Problems, 15
Point $P$ is inside $\triangle ABC$. Line segments $APD$, $BPE$, and $CPF$ are drawn with $D$ on $BC$, $E$ on $AC$, and $F$ on $AB$ (see the figure at right). Given that $AP=6$, $BP=9$, $PD=6$, $PE=3$, and $CF=20$, find the area of $\triangle ABC$.
[asy]
size(200);
pair A=origin, B=(7,0), C=(3.2,15), D=midpoint(B--C), F=(3,0), P=intersectionpoint(C--F, A--D), ex=B+40*dir(B--P), E=intersectionpoint(B--ex, A--C);
draw(A--B--C--A--D^^C--F^^B--E);
pair point=P;
label("$A$", A, dir(point--A));
label("$B$", B, dir(point--B));
label("$C$", C, dir(point--C));
label("$D$", D, dir(point--D));
label("$E$", E, dir(point--E));
label("$F$", F, dir(point--F));
label("$P$", P, dir(0));[/asy]
2008 Indonesia TST, 3
Let $\Gamma_1$ and $\Gamma_2$ be two circles that tangents each other at point $N$, with $\Gamma_2$ located inside $\Gamma_1$. Let $A, B, C$ be distinct points on $\Gamma_1$ such that $AB$ and $AC$ tangents $\Gamma_2$ at $D$ and $E$, respectively. Line $ND$ cuts $\Gamma_1$ again at $K$, and line $CK$ intersects line $DE$ at $I$.
(i) Prove that $CK$ is the angle bisector of $\angle ACB$.
(ii) Prove that $IECN$ and $IBDN$ are cyclic quadrilaterals.
2017 India IMO Training Camp, 3
Let $B = (-1, 0)$ and $C = (1, 0)$ be fixed points on the coordinate plane. A nonempty, bounded subset $S$ of the plane is said to be [i]nice[/i] if
$\text{(i)}$ there is a point $T$ in $S$ such that for every point $Q$ in $S$, the segment $TQ$ lies entirely in $S$; and
$\text{(ii)}$ for any triangle $P_1P_2P_3$, there exists a unique point $A$ in $S$ and a permutation $\sigma$ of the indices $\{1, 2, 3\}$ for which triangles $ABC$ and $P_{\sigma(1)}P_{\sigma(2)}P_{\sigma(3)}$ are similar.
Prove that there exist two distinct nice subsets $S$ and $S'$ of the set $\{(x, y) : x \geq 0, y \geq 0\}$ such that if $A \in S$ and $A' \in S'$ are the unique choices of points in $\text{(ii)}$, then the product $BA \cdot BA'$ is a constant independent of the triangle $P_1P_2P_3$.
2019 Philippine TST, 1
Let $n\geqslant 3$ be an integer. Prove that there exists a set $S$ of $2n$ positive integers satisfying the following property: For every $m=2,3,...,n$ the set $S$ can be partitioned into two subsets with equal sums of elements, with one of subsets of cardinality $m$.
Geometry Mathley 2011-12, 10.4
Let $A_1A_2A_3...A_n$ be a bicentric polygon with $n$ sides. Denote by $I_i$ the incenter of triangle $A_{i-1}A_iA_{i+1}, A_{i(i+1)}$ the intersection of $A_iA_{i+2}$ and $A_{i-1}A_{i+1},I_{i(i+1)}$ is the incenter of triangle $A_iA_{i(i+1)}A_{i+1}$ ($i = 1, n$). Prove that there exist $2n$ points $I_1, I_2, ..., I_n, I_{12}, I_{23}, ...., I_{n1}$ on the same circle.
Nguyễn Văn Linh
JBMO Geometry Collection, 2018
Let $\triangle ABC$ and $A'$,$B'$,$C'$ the symmetrics of vertex over opposite sides.The intersection of the circumcircles of $\triangle ABB'$ and $\triangle ACC'$ is $A_1$.$B_1$ and $C_1$ are defined similarly.Prove that lines $AA_1$,$BB_1$ and $CC_1$ are concurent.
2007 Harvard-MIT Mathematics Tournament, 18
Convex quadrilateral $ABCD$ has right angles $\angle A$ and $\angle C$ and is such that $AB=BC$ and $AD=CD$. The diagonals $AC$ and $BD$ intersect at point $M$. Points $P$ and $Q$ lie on the circumcircle of triangle $AMB$ and segment $CD$, respectively, such that points $P$, $M$, and $Q$ are collinear. Suppose that $m\angle ABC=160^\circ$ and $m\angle QMC=40^\circ$. Find $MP\cdot MQ$, given that $MC=6$.
2018 Sharygin Geometry Olympiad, 22
Six circles of unit radius lie in the plane so that the distance between the centers of any two of them is greater than $d$. What is the least value of $d$ such that there always exists a straight line which does not intersect any of the circles and separates the circles into two groups of three?
2008 Abels Math Contest (Norwegian MO) Final, 4a
Three distinct points $A, B$, and $C$ lie on a circle with centre at $O$. The triangles $AOB, BOC$ , and $COA$ have equal area. What are the possible measures of the angles of the triangle $ABC$ ?
Kvant 2024, M2793
In acute triangle $ABC$ ($AB<AC$) point $O$ is center of its circumcircle $\Omega$. Let the tangent to $\Omega$ drawn at point $A$ intersect the line $BC$ at point $D$. Let the line $DO$ intersects the segments $AB$ and $AC$ at points $E$ and $F$, respectively. Point $G$ is constructed such that $AEGF$ is a parallelogram. Let $K$ and $H$ be points of intersection of segment $BC$ with segments $EG$ and $FG$, respectively. Prove that the circle $(GKH)$ touches the circle $\Omega$.
[i] Proposed by Dong Luu [/i]
Kyiv City MO 1984-93 - geometry, 1993.9.3
The circle divides each side of an equilateral triangle into three equal parts. Prove that the sum of the squares of the distances from any point of this circle to the vertices of the triangle is constant.
1965 German National Olympiad, 3
Two parallelograms $ABCD$ and $A'B'C'D'$ are given in space. Points $A'',B'',C'',D''$ divide the segments $AA',BB',CC',DD'$ in the same ratio. What can be said about the quadrilateral $A''B''C''D''$?
1988 AMC 12/AHSME, 3
Four rectangular paper strips of length $10$ and width $1$ are put flat on a table and overlap perpendicularly as shown. How much area of the table is covered?
[asy]
size(120);
draw((0,0)--(1,0)--(1,4)--(0,4)--(0,0)--(0,1)--(-1,1)--(-1,2)--(0,2)--(0,4)--(-1,4)--(-1,5)--(1,5)--(1,6)--(0,6)--(0,5)--(3,5)--(3,6)--(4,6)--(4,2)--(5,2)--(5,1)--(1,1)--(3,1)--(3,0)--(4,0)--(4,1));
draw((1,4)--(3,4)--(3,2)--(1,2)--(4,2)--(3,2)--(3,6)--(4,6)--(4,5)--(5,5)--(5,4)--(4,4));[/asy]
$ \textbf{(A)}\ 36 \qquad \textbf{(B)}\ 40 \qquad \textbf{(C)}\ 44 \qquad \textbf{(D)}\ 98 \qquad \textbf{(E)}\ 100 $
EMCC Team Rounds, 2016
[b]p1.[/b] Lisa is playing the piano at a tempo of $80$ beats per minute. If four beats make one measure of her rhythm, how many seconds are in one measure?
[b]p2.[/b] Compute the smallest integer $n > 1$ whose base-$2$ and base-$3$ representations both do not contain the digit $0$.
[b]p3.[/b] In a room of $24$ people, $5/6$ of the people are old, and $5/8$ of the people are male. At least how many people are both old and male?
[b]p4.[/b] Juan chooses a random even integer from $1$ to $15$ inclusive, and Gina chooses a random odd integer from $1$ to $15$ inclusive. What is the probability that Juan’s number is larger than Gina’s number? (They choose all possible integers with equal probability.)
[b]p5.[/b] Set $S$ consists of all positive integers less than or equal to $ 2016$. Let $A$ be the subset of $S$ consisting of all multiples of $6$. Let $B$ be the subset of $S$ consisting of all multiples of $7$. Compute the ratio of the number of positive integers in $A$ but not $B$ to the number of integers in $B$ but not $A$.
[b]p6.[/b] Three peas form a unit equilateral triangle on a flat table. Sebastian moves one of the peas a distance $d$ along the table to form a right triangle. Determine the minimum possible value of $d$.
[b]p7.[/b] Oumar is four times as old as Marta. In $m$ years, Oumar will be three times as old as Marta will be. In another $n$ years after that, Oumar will be twice as old as Marta will be. Compute the ratio $m/n$.
[b]p8.[/b] Compute the area of the smallest square in which one can inscribe two non-overlapping equilateral triangles with side length $ 1$.
[b]p9.[/b] Teemu, Marcus, and Sander are signing documents. If they all work together, they would finish in $6$ hours. If only Teemu and Sander work together, the work would be finished in 8 hours. If only Marcus and Sander work together, the work would be finished in $10$ hours. How many hours would Sander take to finish signing if he worked alone?
[b]p10.[/b]Triangle $ABC$ has a right angle at $B$. A circle centered at $B$ with radius $BA$ intersects side $AC$ at a point $D$ different from $A$. Given that $AD = 20$ and $DC = 16$, find the length of $BA$.
[b]p11.[/b] A regular hexagon $H$ with side length $20$ is divided completely into equilateral triangles with side length $ 1$. How many regular hexagons with sides parallel to the sides of $H$ are formed by lines in the grid?
[b]p12[/b]. In convex pentagon $PEARL$, quadrilateral $PERL$ is a trapezoid with side $PL$ parallel to side $ER$. The areas of triangle $ERA$, triangle $LAP$, and trapezoid $PERL$ are all equal. Compute the ratio $\frac{PL}{ER}$.
[b]p13.[/b] Let $m$ and $n$ be positive integers with $m < n$. The first two digits after the decimal point in the decimal representation of the fraction $m/n$ are $74$. What is the smallest possible value of $n$?
[b]p14.[/b] Define functions $f(x, y) = \frac{x + y}{2} - \sqrt{xy}$ and $g(x, y) = \frac{x + y}{2} + \sqrt{xy}$. Compute $g (g (f (1, 3), f (5, 7)), g (f (3, 5), f (7, 9)))$.
[b]p15.[/b] Natalia plants two gardens in a $5 \times 5$ grid of points. Each garden is the interior of a rectangle with vertices on grid points and sides parallel to the sides of the grid. How many unordered pairs of two non-overlapping rectangles can Nataliia choose as gardens? (The two rectangles may share an edge or part of an edge but should not share an interior point.)
PS. You had better use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
MathLinks Contest 7th, 4.1
Let $ A,B,C,D,E$ be five distinct points, such that no three of them lie on the same line. Prove that
\[ AB\plus{}BC\plus{}CA \plus{} DE < AD \plus{} AE \plus{} BD\plus{}BE \plus{} CD\plus{}CE .\]
2007 Balkan MO Shortlist, G1
Let $\omega$ be a circle with center $O$ and let $A$ be a point outside $\omega$. The tangents from $A$ touch $\omega$ at points $B$, and $C$. Let $D$ be the point at which the line $AO$ intersects the circle such that $O$ is between $A$ and $D$. Denote by $X$ the orthogonal projection of $B$ onto $CD$, by $Y$ the midpoint of the segment $BX$ and by $Z$ the second point of intersection of the line $DY$ with $\omega$. Prove that $ZA$ and $ZC$ are perpendicular to each other.
2017 IMO Shortlist, G7
A convex quadrilateral $ABCD$ has an inscribed circle with center $I$. Let $I_a, I_b, I_c$ and $I_d$ be the incenters of the triangles $DAB, ABC, BCD$ and $CDA$, respectively. Suppose that the common external tangents of the circles $AI_bI_d$ and $CI_bI_d$ meet at $X$, and the common external tangents of the circles $BI_aI_c$ and $DI_aI_c$ meet at $Y$. Prove that $\angle{XIY}=90^{\circ}$.
2014 Lithuania Team Selection Test, 6
Circles ω[size=35]1[/size] and ω[size=35]2[/size] have no common point. Where is outerior tangents a and b, interior tangent c. Lines a, b and c touches circle
ω[size=35]1[/size] respectively on points A[size=35]1[/size], B[size=35]1[/size] and C[size=35]1[/size], and circle ω[size=35]2[/size] – respectively
on points A[size=35]2[/size], B[size=35]2[/size] and C[size=35]2[/size]. Prove that triangles A[size=35]1[/size]B[size=35]1[/size]C[size=35]1[/size] and A[size=35]2[/size]B[size=35]2[/size]C[size=35]2[/size]
area ratio is the same as ratio of ω[size=35]1[/size] and ω[size=35]2[/size] radii.
1998 Romania Team Selection Test, 1
We are given an isosceles triangle $ABC$ such that $BC=a$ and $AB=BC=b$. The variable points $M\in (AC)$ and $N\in (AB)$ satisfy $a^2\cdot AM \cdot AN = b^2 \cdot BN \cdot CM$. The straight lines $BM$ and $CN$ intersect in $P$. Find the locus of the variable point $P$.
[i]Dan Branzei[/i]
1992 AMC 8, 24
Four circles of radius $3$ are arranged as shown. Their centers are the vertices of a square. The area of the shaded region is closest to
[asy]
fill((3,3)--(3,-3)--(-3,-3)--(-3,3)--cycle,lightgray);
fill(arc((3,3),(0,3),(3,0),CCW)--(3,3)--cycle,white);
fill(arc((3,-3),(3,0),(0,-3),CCW)--(3,-3)--cycle,white);
fill(arc((-3,-3),(0,-3),(-3,0),CCW)--(-3,-3)--cycle,white);
fill(arc((-3,3),(-3,0),(0,3),CCW)--(-3,3)--cycle,white);
draw(circle((3,3),3));
draw(circle((3,-3),3));
draw(circle((-3,-3),3));
draw(circle((-3,3),3));
draw((3,3)--(3,-3)--(-3,-3)--(-3,3)--cycle);
[/asy]
$\text{(A)}\ 7.7 \qquad \text{(B)}\ 12.1 \qquad \text{(C)}\ 17.2 \qquad \text{(D)}\ 18 \qquad \text{(E)}\ 27$
2017 Yasinsky Geometry Olympiad, 1
Rectangular sheet of paper $ABCD$ is folded as shown in the figure. Find the rato $DK: AB$, given that $C_1$ is the midpoint of $AD$.
[img]https://3.bp.blogspot.com/-9EkSdxpGnPU/W6dWD82CxwI/AAAAAAAAJHw/iTkEOejlm9U6Dbu427vUJwKMfEOOVn0WwCK4BGAYYCw/s400/Yasinsky%2B2017%2BVIII-IX%2Bp1.png[/img]