This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

Kvant 2023, M2764

Let $BE{}$ and $CF$ be heights in the acute-angled triangle $ABC{}$ and let $O{}$ be its circumcenter. The points $M{}$ and $N{}$ are selected on the side $BC{}$ so that $BM=CN.{}$ The line $BE{}$ intersects the circle $(MBF)$ a second time at $P{}$ and the line $CF{}$ intersects the circle $(NCE)$ a second time at $Q.{}$ Prove that the lines $PF, QE$ and $AO{}$ intersect at the same point. [i]Proposed by Luu Dong[/i]

2024 Azerbaijan IMO TST, 2

Tags: geometry
Let $ABCD$ be a cyclic quadrilateral with $\angle BAD < \angle ADC$. Let $M$ be the midpoint of the arc $CD$ not containing $A$. Suppose there is a point $P$ inside $ABCD$ such that $\angle ADB = \angle CPD$ and $\angle ADP = \angle PCB$. Prove that lines $AD, PM$, and $BC$ are concurrent.

2000 Austria Beginners' Competition, 4

Let $ABCDEFG$ be half of a regular dodecagon . Let $P$ be the intersection of the lines $AB$ and $GF$, and let $Q$ be the intersection of the lines $AC$ and $GE$. Prove that $Q$ is the circumcenter of the triangle $AGP$.

1987 Polish MO Finals, 2

A regular $n$-gon is inscribed in a circle radius $1$. Let $X$ be the set of all arcs $PQ$, where $P, Q$ are distinct vertices of the $n$-gon. $5$ elements $L_1, L_2, ... , L_5$ of $X$ are chosen at random (so two or more of the $L_i$ can be the same). Show that the expected length of $L_1 \cap L_2 \cap L_3 \cap L_4 \cap L_5$ is independent of $n$.

1958 AMC 12/AHSME, 36

The sides of a triangle are $ 30$, $ 70$, and $ 80$ units. If an altitude is dropped upon the side of length $ 80$, the larger segment cut off on this side is: $ \textbf{(A)}\ 62\qquad \textbf{(B)}\ 63\qquad \textbf{(C)}\ 64\qquad \textbf{(D)}\ 65\qquad \textbf{(E)}\ 66$

2025 Portugal MO, 4

Tags: geometry , rhombus
Let $ABCD$ be a square with $2cm$ side length and with center $T$. A rhombus $ARTE$ is drawn where point $E$ lies on line $DC$. What is the area of $ARTE$?

2012 Bosnia and Herzegovina Junior BMO TST, 3

Tags: value , angle , geometry
Internal angles of triangle are $(5x+3y)^{\circ}$, $(3x+20)^{\circ}$ and $(10y+30)^{\circ}$ where $x$ and $y$ are positive integers. Which values can $x+y$ get ?

2024 Euler Olympiad, Round 2, 3

Consider a convex quadrilateral \(ABCD\) with \(AC > BD\). In the plane of this quadrilateral, points \(M\) and \(N\) are chosen such that triangles \(ABM\) and \(CDN\) are equilateral, and segments \(MD\) and \(NA\) intersect lines \(AB\) and \(CD\) respectively. Similarly, points \(P\) and \(Q\) are chosen such that triangles \(ADP\) and \(BCQ\) are equilateral, but here segments \(PB\) and \(QA\) do not intersect lines \(AD\) and \(BC\) respectively. Prove that \(MN = AC + BD\) if and only if \(PQ = AC - BD\). [i]Proposed by Zaza Meliqidze, Georgia [/i]

DMM Team Rounds, 2012

[b]p1.[/b] Let $2^k$ be the largest power of $2$ dividing $30! = 30 \cdot 29 \cdot 28 ... 2 \cdot 1$. Find $k$. [b]p2.[/b] Let $d(n)$ be the total number of digits needed to write all the numbers from $1$ to $n$ in base $10$, for example, $d(5) = 5$ and $d(20) = 31$. Find $d(2012)$. [b]p3.[/b] Jim and TongTong play a game. Jim flips $10$ coins and TongTong flips $11$ coins, whoever gets the most heads wins. If they get the same number of heads, there is a tie. What is the probability that TongTong wins? [b]p4.[/b] There are a certain number of potatoes in a pile. When separated into mounds of three, two remain. When divided into mounds of four, three remain. When divided into mounds of five, one remain. It is clear there are at least $150$ potatoes in the pile. What is the least number of potatoes there can be in the pile? [b]p5.[/b] Call an ordered triple of sets $(A, B, C)$ nice if $|A \cap B| = |B \cap C| = |C \cap A| = 2$ and $|A \cap B \cap C| = 0$. How many ordered triples of subsets of $\{1, 2, · · · , 9\}$ are nice? [b]p6.[/b] Brett has an $ n \times n \times n$ cube (where $n$ is an integer) which he dips into blue paint. He then cuts the cube into a bunch of $ 1 \times 1 \times 1$ cubes, and notices that the number of un-painted cubes (which is positive) evenly divides the number of painted cubes. What is the largest possible side length of Brett’s original cube? Note that $\lfloor x\rfloor$ denotes the largest integer less than or equal to $x$. [b]p7.[/b] Choose two real numbers $x$ and $y$ uniformly at random from the interval $[0, 1]$. What is the probability that $x$ is closer to $1/4$ than $y$ is to $1/2$? [b]p8. [/b] In triangle $ABC$, we have $\angle BAC = 20^o$ and $AB = AC$. $D$ is a point on segment $AB$ such that $AD = BC$. What is $\angle ADC$, in degree. [b]p9.[/b] Let $a, b, c, d$ be real numbers such that $ab + c + d = 2012$, $bc + d + a = 2010$, $cd + a + b = 2013$, $da + b + c = 2009$. Find $d$. [b]p10. [/b]Let $\theta \in [0, 2\pi)$ such that $\cos \theta = 2/3$. Find $\sum_{n=0}^{\infty}\frac{1}{2^n}\cos(n \theta)$ PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

1985 IMO Longlists, 55

Tags: rhombus , geometry
The points $A,B,C$ are in this order on line $D$, and $AB = 4BC$. Let $M$ be a variable point on the perpendicular to $D$ through $C$. Let $MT_1$ and $MT_2$ be tangents to the circle with center $A$ and radius $AB$. Determine the locus of the orthocenter of the triangle $MT_1T_2.$

2012 Today's Calculation Of Integral, 790

Define a parabola $C$ by $y=x^2+1$ on the coordinate plane. Let $s,\ t$ be real numbers with $t<0$. Denote by $l_1,\ l_2$ the tangent lines drawn from the point $(s,\ t)$ to the parabola $C$. (1) Find the equations of the tangents $l_1,\ l_2$. (2) Let $a$ be positive real number. Find the pairs of $(s,\ t)$ such that the area of the region enclosed by $C,\ l_1,\ l_2$ is $a$.

1953 Moscow Mathematical Olympiad, 237

Three circles are pair-wise tangent to each other. Prove that the circle passing through the three tangent points is perpendicular to each of the initial three circles.

2009 Jozsef Wildt International Math Competition, W. 25

Let $ABCD$ be a quadrilateral in which $\widehat{A}=\widehat{C}=90^{\circ}$. Prove that $$\frac{1}{BD}(AB+BC+CD+DA)+BD^2\left (\frac{1}{AB\cdot AD}+\frac{1}{CB\cdot CD}\right )\geq 2\left (2+\sqrt{2}\right )$$

2017 Iran MO (3rd round), 3

Tags: geometry
Let $ABC$ be an acute-angle triangle. Suppose that $M$ be the midpoint of $BC$ and $H$ be the orthocenter of $ABC$. Let $F\equiv BH\cap AC$ and $E\equiv CH\cap AB$. Suppose that $X$ be a point on $EF$ such that $\angle XMH=\angle HAM$ and $A,X$ are in the distinct side of $MH$. Prove that $AH$ bisects $MX$.

2001 Spain Mathematical Olympiad, Problem 5

Tags: geometry
A quadrilateral $ABCD$ is inscribed in a circle of radius 1 whose diameter is $AB$. If the quadrilateral $ABCD$ has an incircle, prove that $CD \leq 2 \sqrt{5} - 2$.

2010 Tournament Of Towns, 3

Is it possible to cover the surface of a regular octahedron by several regular hexagons without gaps and overlaps? (A regular octahedron has $6$ vertices, each face is an equilateral triangle, each vertex belongs to $4$ faces.)

2022 Azerbaijan IMO TST, 3

Tags: geometry
Let $ABC$ be a triangle with circumcircle $\omega$ and $D$ be any point on $\omega.$ Suppose that $P$ is the midpoint of chord $AD$ and points $X, Y$ are chosen on lines $AC, AB$ such that reflections of $B, C$ with respect to $AD$ lie on $XP, YP,$ respectively. If the circumcircle of triangle $AXY$ intersects $\omega$ at $I$ for the second time, prove that $\angle PID$ equals the angle formed by lines $AD$ and $BC.$ [i]Proposed by tenplusten.[/i]

2014 BMT Spring, 1

Tags: geometry
Consider a regular hexagon with an incircle. What is the ratio of the area inside the incircle to the area of the hexagon?

1997 Tournament Of Towns, (528) 5

$E$ is the midpoint of the side $AD$ of a parallelogram $ABCD$. $F$ is the foot of the perpendicular from the vertex $B$ to the line $CE$. Prove that $ABF$ is an isosceles triangle. (MA Bolchkevich)

2007 National Olympiad First Round, 17

Let $K$ be the point of intersection of $AB$ and the line touching the circumcircle of $\triangle ABC$ at $C$ where $m(\widehat {A}) > m(\widehat {B})$. Let $L$ be a point on $[BC]$ such that $m(\widehat{ALB})=m(\widehat{CAK})$, $5|LC|=4|BL|$, and $|KC|=12$. What is $|AK|$? $ \textbf{(A)}\ 4\sqrt 2 \qquad\textbf{(B)}\ 6 \qquad\textbf{(C)}\ 8 \qquad\textbf{(D)}\ 9 \qquad\textbf{(E)}\ \text{None of the above} $

2017 Canadian Mathematical Olympiad Qualification, 8

Tags: geometry
A convex quadrilateral $ABCD$ is said to be [i]dividable[/i] if for every internal point $P$, the area of $\triangle PAB$ plus the area of $\triangle PCD$ is equal to the area of $\triangle PBC$ plus the area of $\triangle PDA$. Characterize all quadrilaterals which are dividable.

2007 ITest, 27

The face diagonal of a cube has length $4$. Find the value of $n$ given that $n\sqrt2$ is the $\textit{volume}$ of the cube.

2010 Contests, 3

Let $ K$ be the circumscribed circle of the trapezoid $ ABCD$ . In this trapezoid the diagonals $ AC$ and $ BD$ are perpendicular. The parallel sides $ AB\equal{}a$ and $ CD\equal{}c$ are diameters of the circles $ K_{a}$ and $ K_{b}$ respectively. Find the perimeter and the area of the part inside the circle $ K$, that is outside circles $ K_{a}$ and $ K_{b}$.

1994 Turkey MO (2nd round), 2

Let $ABCD$ be a cyclic quadrilateral $\angle{BAD}< 90^\circ$ and $\angle BCA = \angle DCA$. Point $E$ is taken on segment $DA$ such that $BD=2DE$. The line through $E$ parallel to $CD$ intersects the diagonal $AC$ at $F$. Prove that \[ \frac{AC\cdot BD}{AB\cdot FC}=2.\]

2012 AMC 10, 2

A square with side length $8$ is cut in half, creating two congruent rectangles. What are the dimensions of one of these rectangles? $ \textbf{(A)}\ 2\text{ by }4 \qquad\textbf{(B)}\ 2\text{ by }6 \qquad\textbf{(C)}\ 2\text{ by }8 \qquad\textbf{(D)}\ 4\text{ by }4 \qquad\textbf{(E)}\ 4\text{ by }8 $