Found problems: 25757
2009 Putnam, B5
Let $ f: (1,\infty)\to\mathbb{R}$ be a differentiable function such that
\[ f'(x)\equal{}\frac{x^2\minus{}\left(f(x)\right)^2}{x^2\left(\left(f(x)\right)^2\plus{}1\right)}\quad\text{for all }x>1.\]
Prove that $ \displaystyle\lim_{x\to\infty}f(x)\equal{}\infty.$
2019 Baltic Way, 14
Let $ABC$ be a triangle with $\angle ABC = 90^{\circ}$, and let $H$ be the foot of the altitude from $B$. The points $M$ and $N$ are the midpoints of the segments $AH$ and $CH$, respectively. Let $P$ and $Q$ be the second points of intersection of the circumcircle of the triangle $ABC$ with the lines $BM$ and $BN$, respectively. The segments $AQ$ and $CP$ intersect at the point $R$. Prove that the line $BR$ passes through the midpoint of the segment $MN$.
1990 IMO Longlists, 68
In coordinate plane, a variable point $M$, starting from the origin $O(0, 0)$, moves on the line $l$ with slope $k$, where $k$ is an irrational number.
[b](i)[/b] Prove that point $O(0, 0)$ is the only rational point (namely, the coordinates of which are both rationals) on the line $l.$
[b](ii)[/b] Prove that for any number $\varepsilon > 0$, there exist integers $m, n$ such that the distance between $l$ and the point $(m, n)$ is less than $\varepsilon.$
1993 Tournament Of Towns, (366) 5
A paper triangle with the angles $20^o$, $20^o$ and $140^o$ is cut into two triangles by the bisector of one of its angles. Then one of these triangles is cut into two by its bisector, and so on. Prove that it is impossible to get a triangle similar to the initial one.
(AI Galochkin)
2011 Indonesia MO, 5
[asy]
draw((0,1)--(4,1)--(4,2)--(0,2)--cycle);
draw((2,0)--(3,0)--(3,3)--(2,3)--cycle);
draw((1,1)--(1,2));
label("1",(0.5,1.5));
label("2",(1.5,1.5));
label("32",(2.5,1.5));
label("16",(3.5,1.5));
label("8",(2.5,0.5));
label("6",(2.5,2.5));
[/asy]
The image above is a net of a unit cube. Let $n$ be a positive integer, and let $2n$ such cubes are placed to build a $1 \times 2 \times n$ cuboid which is placed on a floor. Let $S$ be the sum of all numbers on the block visible (not facing the floor). Find the minimum value of $n$ such that there exists such cuboid and its placement on the floor so $S > 2011$.
1978 IMO Longlists, 13
The satellites $A$ and $B$ circle the Earth in the equatorial plane at altitude $h$. They are separated by distance $2r$, where $r$ is the radius of the Earth. For which $h$ can they be seen in mutually perpendicular directions from some point on the equator?
2024 Taiwan TST Round 3, 2
Let $I$ be the incenter of triangle $ABC$, and let $\omega$ be its incircle. Let $E$ and $F$ be the points of tangency of $\omega$ with $CA$ and $AB$, respectively. Let $X$ and $Y$ be the intersections of the circumcircle of $BIC$ and $\omega$. Take a point $T$ on $BC$ such that $\angle AIT$ is a right angle. Let $G$ be the intersection of $EF$ and $BC$, and let $Z$ be the intersection of $XY$ and $AT$. Prove that $AZ$, $ZG$, and $AI$ form an isosceles triangle.
[i]Proposed by Li4 and usjl.[/i]
2019 Pan-African, 4
The tangents to the circumcircle of $\triangle ABC$ at $B$ and $C$ meet at $D$. The circumcircle of $\triangle BCD$ meets sides $AC$ and $AB$ again at $E$ and $F$ respectively. Let $O$ be the circumcentre of $\triangle ABC$. Show that $AO$ is perpendicular to $EF$.
1996 Spain Mathematical Olympiad, 2
Let $G$ be the centroid of a triangle $ABC$. Prove that if $AB+GC = AC+GB$, then the triangle is isosceles
1937 Moscow Mathematical Olympiad, 036
* Given a regular dodecahedron. Find how many ways are there to draw a plane through it so that its section of the dodecahedron is a regular hexagon?
1997 AMC 8, 10
What fraction of this square region is shaded? Stripes are equal in width, and the figure is drawn to scale.
[asy]
unitsize(8);
fill((0,0)--(6,0)--(6,6)--(0,6)--cycle,black);
fill((0,0)--(5,0)--(5,5)--(0,5)--cycle,white);
fill((0,0)--(4,0)--(4,4)--(0,4)--cycle,black);
fill((0,0)--(3,0)--(3,3)--(0,3)--cycle,white);
fill((0,0)--(2,0)--(2,2)--(0,2)--cycle,black);
fill((0,0)--(1,0)--(1,1)--(0,1)--cycle,white);
draw((0,6)--(0,0)--(6,0));
[/asy]
$\textbf{(A)}\ \dfrac{5}{12} \qquad \textbf{(B)}\ \dfrac{1}{2} \qquad \textbf{(C)}\ \dfrac{7}{12} \qquad \textbf{(D)}\ \dfrac{2}{3} \qquad \textbf{(E)}\ \dfrac{5}{6}$
2023 Bangladesh Mathematical Olympiad, P9
Let $\Delta ABC$ be an acute angled triangle. $D$ is a point on side $BC$ such that $AD$ bisects angle $\angle BAC$. A line $l$ is tangent to the circumcircles of triangles $ADB$ and $ADC$ at point $K$ and $L$, respectively. Let $M$, $N$ and $P$ be its midpoints of $BD$, $DC$ and $KL$, respectively. Prove that $l$ is tangent to the circumcircle of $\Delta MNP$.
Estonia Open Junior - geometry, 2012.2.5
Is it possible that the perimeter of a triangle whose side lengths are integers, is divisible by the double of the longest side length?
2003 Oral Moscow Geometry Olympiad, 2
In a convex quadrilateral $ABCD$, $\angle ABC = 90^o$ , $\angle BAC = \angle CAD$, $AC = AD, DH$ is the alltitude of the triangle $ACD$. In what ratio does the line $BH$ divide the segment $CD$?
1990 India Regional Mathematical Olympiad, 3
A square sheet of paper $ABCD$ is so folded that $B$ falls on the mid point of $M$ of $CD$. Prove that the crease will divide $BC$ in the ration $5 : 3$.
2013 Saudi Arabia Pre-TST, 2.4
$\vartriangle ABC$ is a triangle and $I_b. I_c$ its excenters opposite to $B,C$. Prove that $\vartriangle ABC$ is right at $A$ if and only if its area is equal to $\frac12 AI_b \cdot AI_c$.
1999 Romania Team Selection Test, 9
Let $O,A,B,C$ be variable points in the plane such that $OA=4$, $OB=2\sqrt3$ and $OC=\sqrt {22}$. Find the maximum value of the area $ABC$.
[i]Mihai Baluna[/i]
2023 Assara - South Russian Girl's MO, 7
A parabola is drawn on the coordinate plane - the graph of a square trinomial. The vertices of triangle $ABC$ lie on this parabola so that the bisector of angle $\angle BAC$ is parallel to the axis $Ox$ . Prove that the midpoint of the median drawn from vertex $A$ lies on the axis of the parabola.
2013 Denmark MO - Mohr Contest, 5
The angle bisector of $A$ in triangle $ABC$ intersects $BC$ in the point $D$. The point $E$ lies on the side $AC$, and the lines $AD$ and $BE$ intersect in the point $F$. Furthermore, $\frac{|AF|}{|F D|}= 3$ and $\frac{|BF|}{|F E|}=\frac{5}{3}$. Prove that $|AB| = |AC|$.
[img]https://1.bp.blogspot.com/-evofDCeJWPY/XzT9dmxXzVI/AAAAAAAAMVY/ZN87X3Cg8iMiULwvMhgFrXbdd_f1f-JWwCLcBGAsYHQ/s0/2013%2BMohr%2Bp5.png[/img]
2018 Hong Kong TST, 1
Let $ABC$ be a triangle with $AB=AC$. A circle $\Gamma$ lies outside triangle $ABC$ and is tangent to line $AC$ at $C$. Point $D$ lies on $\Gamma$ such that the circumcircle of triangle $ABD$ is internally tangent to $\Gamma$. Segment $AD$ meets $\Gamma$ secondly at $E$. Prove that $BE$ is tangent to $\Gamma$
2001 Tuymaada Olympiad, 3
Let ABC be an acute isosceles triangle ($AB=BC$) inscribed in a circle with center $O$ . The line through the midpoint of the chord $AB$ and point $O$ intersects the line $AC$ at $L$ and the circle at the point $P$. Let the bisector of angle $BAC$ intersects the circle at point $K$. Lines $AB$ and $PK$ intersect at point $D$. Prove that the points $L,B,D$ and $P$ lie on the same circle.
1994 Tournament Of Towns, (407) 5
Does there exist a convex pentagon from which a similar pentagon can be cut off by a straight line?
(S Tokarev)
Swiss NMO - geometry, 2017.8
Let $ABC$ be an isosceles triangle with vertex $A$ and $AB> BC$. Let $k$ be the circle with center $A$ passsing through $B$ and $C$. Let $H$ be the second intersection of $k$ with the altitude of the triangle $ABC$ through $B$. Further let $G$ be the second intersection of $k$ with the median through $B$ in triangle $ABC$. Let $X$ be the intersection of the lines $AC$ and $GH$. Show that $C$ is the midpoint of $AX$.
2017 CMIMC Geometry, 6
Cyclic quadrilateral $ABCD$ satisfies $\angle ABD = 70^\circ$, $\angle ADB=50^\circ$, and $BC=CD$. Suppose $AB$ intersects $CD$ at point $P$, while $AD$ intersects $BC$ at point $Q$. Compute $\angle APQ-\angle AQP$.
2001 Slovenia National Olympiad, Problem 4
Let $n\ge4$ points on a circle be denoted by $1$ through $n$. A pair of two nonadjacent points denoted by $a$ and $b$ is called regular if all numbers on one of the arcs determined by $a$ and $b$ are less than $a$ and $b$. Prove that there are exactly $n-3$ regular pairs.