Found problems: 25757
1961 All-Soviet Union Olympiad, 2
Consider a rectangle $A_1A_2A_3A_4$ and a circle $\mathcal{C}_i$ centered at $A_i$ with radius $r_i$ for $i=1,2,3,4$. Suppose that $r_1+r_3=r_2+r_4<d$, where $d$ is the diagonal of the rectangle. The two pairs of common outer tangents of $\mathcal{C}_1$ and $\mathcal{C}_3$, and of $\mathcal{C}_2$ and $\mathcal{C}_4$ form a quadrangle. Prove that this quadrangle has an inscribed circle.
1988 IMO Longlists, 36
[b]i.)[/b] Let $ABC$ be a triangle with $AB = 12$ and $AC = 16.$ Suppose $M$ is the midpoint of side $BC$ and points $E$ and $F$ are chosen on sides $AC$ and $AB$, respectively, and suppose that lines $EF$ and $AM$ intersect at $G.$ If $AE = 2 \cdot AF$ then find the ratio
\[ \frac{EG}{GF} \]
[b]ii.)[/b] Let $E$ be a point external to a circle and suppose that two chords $EAB$ and $EDC$ meet at angle of $40^{\circ}.$ If $AB = BC = CD$ find the size of angle $ACD.$
Kyiv City MO Juniors 2003+ geometry, 2011.9.41
The triangle $ABC$ is inscribed in a circle. At points $A$ and $B$ are tangents to this circle, which intersect at point $T$. A line drawn through the point $T$ parallel to the side $AC$ intersects the side $BC$ at the point $D$. Prove that $AD = CD$.
1970 AMC 12/AHSME, 30
In the accompanying figure, segments $AB$ and $CD$ are parallel, the measure of angle $D$ is twice the measure of angle $B$, and the measures of segments $AB$ and $CD$ are $a$ and $b$ respectively. Then the measure of $AB$ is equal to
$\textbf{(A) }\dfrac{1}{2}a+2b\qquad\textbf{(B) }\dfrac{3}{2}b+\dfrac{3}{4}a\qquad\textbf{(C) }2a-b\qquad\textbf{(D) }4b-\dfrac{1}{2}a\qquad \textbf{(E) }a+b$
[asy]
size(175);
defaultpen(linewidth(0.8));
real r=50, a=4,b=2.5,c=6.25;
pair A=origin,B=c*dir(r),D=(a,0),C=shift(b*dir(r))*D;
draw(A--B--C--D--cycle);
label("$A$",A,SW);
label("$B$",B,N);
label("$C$",C,E);
label("$D$",D,S);
label("$a$",D/2,N);
label("$b$",(C+D)/2,NW);
//Credit to djmathman for the diagram[/asy]
Kyiv City MO 1984-93 - geometry, 1987.9.4
Inscribe a triangle in a given circle, if its smallest side is known, as well as the point of intersection of altitudes lying outside the circle.
DMM Individual Rounds, 2011 Tie
[b]p1.[/b] $2011$ distinct points are arranged along the perimeter of a circle. We choose without replacement four points $P$, $Q$, $R$, $S$. What is the probability that no two of the segments $P Q$, $QR$, $RS$, $SP$ intersect (disregarding the endpoints)?
[b]p2.[/b] In Soviet Russia, all phone numbers are between three and six digits and contain only the digits $1$, $2$, and $3$. No phone number may be the prefix of another phone number, so, for example, we cannot have the phone numbers $123$ and $12332$. If the Soviet bureaucracy has preassigned $10$ phone numbers of length $3$, $20$ numbers of length $4$, and $77$ phone numbers of length $6$, what is the maximum number of phone numbers of length $5$ that the authorities can allocate?
[b]p3.[/b] The sequence $\{a_n\}_{n\ge 1}$ is defined as follows: we have $a_1 = 1$, $a_2 = 0$, and for $n \ge 3$ we have $$a_n = \frac12 \sum\limits_{\substack{1\le i,j\\ i+j+k=n}} a_ia_ja_k.$$
Find $$\sum^{\infty}_{n=1} \frac{a_n}{2^n}$$
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
1967 IMO Longlists, 34
Faces of a convex polyhedron are six squares and 8 equilateral triangles and each edge is a common side for one triangle and one square. All dihedral angles obtained from the triangle and square with a common edge, are equal. Prove that it is possible to circumscribe a sphere around the polyhedron, and compute the ratio of the squares of volumes of that polyhedron and of the ball whose boundary is the circumscribed sphere.
1997 Federal Competition For Advanced Students, Part 2, 3
Let be given a triangle $ABC$. Points $P$ on side $AC$ and $Y$ on the production of $CB$ beyond $B$ are chosen so that $Y$ subtends equal angles with $AP$ and $PC$. Similarly, $Q$ on side $BC$ and $X$ on the production of $AC$ beyond $C$ are such that $X$ subtends equal angles with $BQ$ and $QC$. Lines $YP$ and $XB$ meet at $R$, $XQ$ and $YA$ meet at $S$, and $XB$ and $YA$ meet at $D$. Prove that $PQRS$ is a parallelogram if and only if $ACBD$ is a cyclic quadrilateral.
2019 Mediterranean Mathematics Olympiad, 4
Let $P$ be a point in the interior of an equilateral triangle with height $1$, and let $x,y,z$ denote the distances from $P$ to the three sides of the triangle. Prove that
\[ x^2+y^2+z^2 ~\ge~ x^3+y^3+z^3 +6xyz \]
2019 New Zealand MO, 5
An equilateral triangle is partitioned into smaller equilateral triangular pieces. Prove that two of the pieces are the same size.
1976 IMO Longlists, 36
Three concentric circles with common center $O$ are cut by a common chord in successive points $A, B, C$. Tangents drawn to the circles at the points $A, B, C$ enclose a triangular region. If the distance from point $O$ to the common chord is equal to $p$, prove that the area of the region enclosed by the tangents is equal to
\[\frac{AB \cdot BC \cdot CA}{2p}\]
2006 Kazakhstan National Olympiad, 4
grade IX P4, X P3
The bisectors of the angles $ A $ and $ C $ of the triangle $ ABC $ intersect the circumscirbed circle of this triangle at the points $ A_0 $ and $ C_0 $, respectively. The straight line passing through the center of the inscribed circle of triangle $ ABC $ parallel to the side of $ AC $, intersects with the line $ A_0C_0 $ at $ P $. Prove that the line $ PB $ is tangent to the circumcircle of the triangle $ ABC $.
grade XI P4
The bisectors of the angles $ A $ and $ C $ of the triangle $ ABC $ intersect the sides at the points $ A_1 $ and $ C_1 $, and the circumcircle of this triangle at points $ A_0 $ and $ C_0 $ respectively. Straight lines $ A_1C_1 $ and $ A_0C_0 $ intersect at point $ P $. Prove that the segment connecting $ P $ with the center inscribed circles of triangle $ ABC $, parallel to $ AC $.
1998 Moldova Team Selection Test, 9
A hexagon is inscribed in a circle of radius $r$. Two of the sides of the hexagon have length $1$, two have length $2$ and two have length $3$. Show that $r$ satisfies the equation $2r^3 - 7r - 3 = 0$.
1983 Austrian-Polish Competition, 6
Six straight lines are given in space. Among any three of them, two are perpendicular. Show that the given lines can be labeled $\ell_1,...,\ell_6$ in such a way that $\ell_1, \ell_2, \ell_3$ are pairwise perpendicular, and so are $\ell_4, \ell_5, \ell_6$.
1988 IMO Longlists, 34
Let $ ABC$ be an acute-angled triangle. The lines $ L_{A}$, $ L_{B}$ and $ L_{C}$ are constructed through the vertices $ A$, $ B$ and $ C$ respectively according the following prescription: Let $ H$ be the foot of the altitude drawn from the vertex $ A$ to the side $ BC$; let $ S_{A}$ be the circle with diameter $ AH$; let $ S_{A}$ meet the sides $ AB$ and $ AC$ at $ M$ and $ N$ respectively, where $ M$ and $ N$ are distinct from $ A$; then let $ L_{A}$ be the line through $ A$ perpendicular to $ MN$. The lines $ L_{B}$ and $ L_{C}$ are constructed similarly. Prove that the lines $ L_{A}$, $ L_{B}$ and $ L_{C}$ are concurrent.
Brazil L2 Finals (OBM) - geometry, 2021.3
Let $ABC$ be a scalene triangle and $\omega$ is your incircle. The sides $BC,CA$ and $AB$ are tangents to $\omega$ in $X,Y,Z$ respectively. Let $M$ be the midpoint of $BC$ and $D$ is the intersection point of $BC$ with the angle bisector of $\angle BAC$. Prove that $\angle BAX=\angle MAC$ if and only if $YZ$ passes by the midpoint of $AD$.
2023 HMNT, 4
Let $LOV ER$ be a convex pentagon such that $LOV E$ is a rectangle. Given that $OV = 20$ and $LO =V E = RE = RL = 23$, compute the radius of the circle passing through $R$, $O$, and $V$ .
1999 All-Russian Olympiad Regional Round, 11.4
A polyhedron is circumscribed around a sphere. Let's call its face [i]large [/i] if the projection of the sphere onto the plane of the face falls entirely within the face. Prove that there are no more than 6 large faces.
2012 Sharygin Geometry Olympiad, 1
The altitudes $AA_1$ and $BB_1$ of an acute-angled triangle ABC meet at point $O$. Let $A_1A_2$ and $B_1B_2$ be the altitudes of triangles $OBA_1$ and $OAB_1$ respectively. Prove that $A_2B_2$ is parallel to $AB$.
(L.Steingarts)
1992 Baltic Way, 17
Quadrangle $ ABCD$ is inscribed in a circle with radius 1 in such a way that the diagonal $ AC$ is a diameter of the circle, while the other diagonal $ BD$ is as long as $ AB$. The diagonals intersect at $ P$. It is known that the length of $ PC$ is $ 2/5$. How long is the side $ CD$?
MMATHS Mathathon Rounds, 2018
[u]Round 5 [/u]
[b]p13.[/b] Circles $\omega_1$, $\omega_2$, and $\omega_3$ have radii $8$, $5$, and $5$, respectively, and each is externally tangent to the other two. Circle $\omega_4$ is internally tangent to $\omega_1$, $\omega_2$, and $\omega_3$, and circle $\omega_5$ is externally tangent to the same three circles. Find the product of the radii of $\omega_4$ and $\omega_5$.
[b]p14.[/b] Pythagoras has a regular pentagon with area $1$. He connects each pair of non-adjacent vertices with a line segment, which divides the pentagon into ten triangular regions and one pentagonal region. He colors in all of the obtuse triangles. He then repeats this process using the smaller pentagon. If he continues this process an infinite number of times, what is the total area that he colors in? Please rationalize the denominator of your answer.
p15. Maisy arranges $61$ ordinary yellow tennis balls and $3$ special purple tennis balls into a $4 \times 4 \times 4$ cube. (All tennis balls are the same size.) If she chooses the tennis balls’ positions in the cube randomly, what is the probability that no two purple tennis balls are touching?
[u]Round 6 [/u]
[b]p16.[/b] Points $A, B, C$, and $D$ lie on a line (in that order), and $\vartriangle BCE$ is isosceles with $\overline{BE} = \overline{CE}$. Furthermore, $F$ lies on $\overline{BE}$ and $G$ lies on $\overline{CE}$ such that $\vartriangle BFD$ and $\vartriangle CGA$ are both congruent to $\vartriangle BCE$. Let $H$ be the intersection of $\overline{DF}$ and $\overline{AG}$, and let $I$ be the intersection of $\overline{BE}$ and $\overline{AG}$. If $m \angle BCE = arcsin \left( \frac{12}{13} \right)$, what is $\frac{\overline{HI}}{\overline{FI}}$ ?
[b]p17.[/b] Three states are said to form a tri-state area if each state borders the other two. What is the maximum possible number of tri-state areas in a country with fifty states? Note that states must be contiguous and that states touching only at “corners” do not count as bordering.
[b]p18.[/b] Let $a, b, c, d$, and $e$ be integers satisfying $$2(\sqrt[3]{2})^2 + \sqrt[3]{2}a + 2b + (\sqrt[3]{2})^2c +\sqrt[3]{2}d + e = 0$$ and $$25\sqrt5 i + 25a - 5\sqrt5 ib - 5c + \sqrt5 id + e = 0$$ where $i =\sqrt{-1}$. Find $|a + b + c + d + e|$.
[u]Round 7[/u]
[b]p19.[/b] What is the greatest number of regions that $100$ ellipses can divide the plane into? Include the unbounded region.
[b]p20.[/b] All of the faces of the convex polyhedron $P$ are congruent isosceles (but NOT equilateral) triangles that meet in such a way that each vertex of the polyhedron is the meeting point of either ten base angles of the faces or three vertex angles of the faces. (An isosceles triangle has two base angles and one vertex angle.) Find the sum of the numbers of faces, edges, and vertices of $P$.
[b]p21.[/b] Find the number of ordered $2018$-tuples of integers $(x_1, x_2, .... x_{2018})$, where each integer is between $-2018^2$ and $2018^2$ (inclusive), satisfying $$6(1x_1 + 2x_2 +...· + 2018x_{2018})^2 \ge (2018)(2019)(4037)(x^2_1 + x^2_2 + ... + x^2_{2018}).$$
PS. You should use hide for answers. Rounds 1-4 have been posted [url=https://artofproblemsolving.com/community/c4h2784936p24472982]here[/url]. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2020 Azerbaijan Senior NMO, 3
Let $ABC$ be a scalene triangle, and let $I$ be its incenter. A point $D$ is chosen on line $BC$, such that the circumcircle of triangle $BID$ intersects $AB$ at $E\neq B$, and the circumcircle of triangle $CID$ intersects $AC$ at $F\neq C$. Circumcircle of triangle $EDF$ intersects $AB$ and $AC$ at $M$ and $N$, respectively. Lines $FD$ and $IC$ intersect at $Q$, and lines $ED$ and $BI$ intersect at $P$. Prove that $EN\parallel MF\parallel PQ$.
2021 CHMMC Winter (2021-22), 6
Let $ABC$ be an acute triangle with orthocenter $H$. A point $L \ne A$ lies on the plane of $ABC$ such that $\overline{HL} \perp \overline{AL}$ and $LB : LC = AB : AC$. Suppose $M_1 \ne B$ lies on $\overline{BL}$ such that $\overline{HM_1} \perp \overline{BM_1}$ and $M_2 \ne C$ lies on $\overline{CL}$ such that $\overline{HM_2} \perp \overline{CM_2}$. Prove that $\overline{M_1M_2}$ bisects $\overline{AL}$.
1993 All-Russian Olympiad, 1
Find all quadruples of real numbers such that each of them is equal to the product of some two other numbers in the quadruple.
2015 Azerbaijan JBMO TST, 3
Acute-angled $\triangle{ABC}$ triangle with condition $AB<AC<BC$ has cimcumcircle $C^,$ with center $O$ and radius $R$.And $BD$ and $CE$ diametrs drawn.Circle with center $O$ and radius $R$ intersects $AC$ at $K$.And circle with center $A$ and radius $AD$ intersects $BA$ at $L$.Prove that $EK$ and $DL$ lines intersects at circle $C^,$.