Found problems: 25757
1995 Bundeswettbewerb Mathematik, 2
A line $g$ and a point $A$ outside $g$ are given in a plane. A point $P$ moves along $g$.
Find the locus of the third vertices of equilateral triangles whose two vertices are $A$ and $P$.
2015 Dutch Mathematical Olympiad, 3 juniors
In quadrilateral $ABCD$ sides $BC$ and $AD$ are parallel. In each of the four vertices we draw an angular bisector. The angular bisectors of angles $A$ and $B$ intersect in point $P$, those of angles $B$ and $C$ intersect in point $Q$, those of angles $C$ and $D$ intersect in point $R$, and those of angles $D$ and $A$ intersect in point S. Suppose that $PS$ is parallel to $QR$. Prove that $|AB| =|CD|$.
[asy]
unitsize(1.2 cm);
pair A, B, C, D, P, Q, R, S;
A = (0,0);
D = (3,0);
B = (0.8,1.5);
C = (3.2,1.5);
S = extension(A, incenter(A,B,D), D, incenter(A,C,D));
Q = extension(B, incenter(A,B,C), C, C + incenter(A,B,D) - A);
P = extension(A, S, B, Q);
R = extension(D, S, C, Q);
draw(A--D--C--B--cycle);
draw(B--Q--C);
draw(A--S--D);
dot("$A$", A, SW);
dot("$B$", B, NW);
dot("$C$", C, NE);
dot("$D$", D, SE);
dot("$P$", P, dir(90));
dot("$Q$", Q, dir(270));
dot("$R$", R, dir(90));
dot("$S$", S, dir(90));
[/asy]
Attention: the figure is not drawn to scale.
1966 AMC 12/AHSME, 34
Let $r$ be the speed in miles per hour at which a wheel, $11$ feet in circumference, travels. If the time for a complete rotation of the wheel is shortened by $\tfrac{1}{4}$ of a second, the speed $r$ is increased by $5$ miles per hour. The $r$ is:
$\text{(A)}\ 9\qquad
\text{(B)}\ 10\qquad
\text{(C)}\ 10\tfrac{1}{2}\qquad
\text{(D)}\ 11\qquad
\text{(E)}\ 12$
2002 Flanders Math Olympiad, 4
A lamp is situated at point $A$ and shines inside the cube. A (massive) square is hung on the midpoints of the 4 vertical faces. What's the area of its shadow?
[img]http://www.mathlinks.ro/Forum/album_pic.php?pic_id=285[/img]
ABMC Online Contests, 2021 Dec
[b]p1.[/b] In rectangle $ABMC$, $AB= 5$ and $BM= 8$. If point $X$ is the midpoint of side $AC$, what is the area of triangle $XCM$?
[b]p2.[/b] Find the sum of all possible values of $a+b+c+d$ such that $(a, b, c, d)$ are quadruplets of (not necessarily distinct) prime numbers satisfying $a \cdot b \cdot c \cdot d = 4792$.
[b]p3.[/b] How many integers from $1$ to $2022$ inclusive are divisible by $6$ or $24$, but not by both?
[b]p4.[/b] Jerry begins his English homework at $07:39$ a.m. At $07:44$ a.m., he has finished $2.5\%$ of his homework. Subsequently, for every five minutes that pass, he completes three times as much homework as he did in the previous five minute interval. If Jerry finishes his homework at $AB : CD$ a.m., what is $A + B + C + D$? For example, if he finishes at $03:14$ a.m., $A + B + C + D = 0 + 3 + 1 + 4$.
[b]p5.[/b] Advay the frog jumps $10$ times on Mondays, Wednesdays and Fridays. He jumps $7$ times on Tuesdays and Saturdays. He jumps $5$ times on Thursdays and Sundays. How many times in total did Advay jump in November if November $17$th falls on a Thursday? (There are $30$ days in November).
[b]p6.[/b] In the following diagram, $\angle BAD\cong \angle DAC$, $\overline{CD} = 2\overline{BD}$, and $ \angle AEC$ and $\angle ACE$ are complementary. Given that $\overline{BA} = 210$ and $\overline{EC} = 525$, find $\overline{AE}$.
[img]https://cdn.artofproblemsolving.com/attachments/5/3/8e11caf2d7dbb143a296573f265e696b4ab27e.png[/img]
[b]p7.[/b] How many trailing zeros are there when $2021!$ is expressed in base $2021$?
[b]p8.[/b] When two circular rings of diameter $12$ on the Olympic Games Logo intersect, they meet at two points, creating a $60^o$ arc on each circle. If four such intersections exist on the logo, and no region is in $3$ circles, the area of the regions of the logo that exist in exactly two circles is $a\pi - b\sqrt{c}$ where $a$, $b$, $c$ are positive integers and $\sqrt{c}$ is fully simplified find $a + b + c$.
[b]p9.[/b] If $x^2 + ax - 3$ is a factor of $x^4 - x^3 + bx^2 - 5x - 3$, then what is $|a + b|$?
[b]p10.[/b] Let $(x, y, z)$ be the point on the graph of $x^4 +2x^2y^2 +y^4 -2x^2 -2y^2 +z^2 +1 = 0$ such that $x+y +z$ is maximized. Find $a+b$ if $xy +xz +yz$ can be expressed as $\frac{a}{b}$ where $a$, $b$ are relatively prime positive integers.
[b]p11.[/b] Andy starts driving from Pittsburgh to Columbus and back at a random time from $12$ pm to $3$ pm. Brendan starts driving from Pittsburgh to Columbus and back at a random time from $1$ pm to $4$ pm. Both Andy and Brendan take $3$ hours for the round trip, and they travel at constant speeds. The probability that they pass each other closer to Pittsburgh than Columbus is$ m/n$, for relatively prime positive integers $m$ and $n$. What is $m + n$?
[b]p12.[/b] Consider trapezoid $ABCD$ with $AB$ parallel to $CD$ and $AB < CD$. Let $AD \cap BC = O$, $BO = 5$, and $BC = 11$. Drop perpendicular $AH$ and $BI$ onto $CD$. Given that $AH : AD = \frac23$ and $BI : BC = \frac56$ , calculate $a + b + c + d - e$ if $AB + CD$ can be expressed as $\frac{a\sqrt{b} + c\sqrt{d}}{e}$ where $a$, $b$, $c$, $d$, $e$ are integers with $gcd(a, c, e) = 1$ and $\sqrt{b}$, $\sqrt{d}$ are fully simplified.
[b]p13.[/b] The polynomials $p(x)$ and $q(x)$ are of the same degree and have the same set of integer coefficients but the order of the coefficients is different. What is the smallest possible positive difference between $p(2021)$ and $q(2021)$?
[b]p14.[/b] Let $ABCD$ be a square with side length $12$, and $P$ be a point inside $ABCD$. Let line $AP$ intersect $DC$ at $E$. Let line $DE$ intersect the circumcircle of $ADP$ at $F \ne D$. Given that line $EB$ is tangent to the circumcircle of $ABP$ at $B$, and $FD = 8$, find $m + n$ if $AP$ can be expressed as $\frac{m}{n}$ for relatively prime positive integers $m$, $n$.
[b]p15.[/b] A three digit number $m$ is chosen such that its hundreds digit is the sum of the tens and units digits. What is the smallest positive integer $n$ such that $n$ cannot divide $m$?
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2012 Online Math Open Problems, 29
In the Cartesian plane, let $S_{i,j} = \{(x,y)\mid i \le x \le j\}$. For $i=0,1,\ldots,2012$, color $S_{i,i+1}$ pink if $i$ is even and gray if $i$ is odd. For a convex polygon $P$ in the plane, let $d(P)$ denote its pink density, i.e. the fraction of its total area that is pink. Call a polygon $P$ [i]pinxtreme[/i] if it lies completely in the region $S_{0,2013}$ and has at least one vertex on each of the lines $x=0$ and $x=2013$. Given that the minimum value of $d(P)$ over all non-degenerate convex pinxtreme polygons $P$ in the plane can be expressed in the form $\frac{(1+\sqrt{p})^2}{q^2}$ for positive integers $p,q$, find $p+q$.
[i]Victor Wang.[/i]
2025 Ukraine National Mathematical Olympiad, 10.8
In an acute-angled triangle \(ABC\) \((AC > BC)\) with altitude \(AD\), the following points are marked: \(H\) - the orthocenter, \(O\) - the circumcenter, \(K\) - the midpoint of side \(AB\). Inside the triangle \(\triangle ADC\), there is a point \(P\) such that the following equality holds:
\[
\angle KPD + \angle ACB = 2 \angle OPH = 180^{\circ}
\]
Prove that
\[
BH = 2PD
\]
[i]Proposed by Vadym Solomka[/i]
1983 Spain Mathematical Olympiad, 3
A semicircle of radius $r$ is divided into $n + 1$ equal parts and any point $k$ of the division with the ends of the semicircle forms a triangle $A_k$. Calculate the limit, as $n$ tends to infinity, of the arithmetic mean of the areas of the triangles.
2008 APMO, 3
Let $ \Gamma$ be the circumcircle of a triangle $ ABC$. A circle passing through points $ A$ and $ C$ meets the sides $ BC$ and $ BA$ at $ D$ and $ E$, respectively. The lines $ AD$ and $ CE$ meet $ \Gamma$ again at $ G$ and $ H$, respectively. The tangent lines of $ \Gamma$ at $ A$ and $ C$ meet the line $ DE$ at $ L$ and $ M$, respectively. Prove that the lines $ LH$ and $ MG$ meet at $ \Gamma$.
1986 IMO Shortlist, 14
The circle inscribed in a triangle $ABC$ touches the sides $BC,CA,AB$ in $D,E, F$, respectively, and $X, Y,Z$ are the midpoints of $EF, FD,DE$, respectively. Prove that the centers of the inscribed circle and of the circles around $XYZ$ and $ABC$ are collinear.
2024 Baltic Way, 11
Let $ABCD$ be a cyclic quadrilateral with circumcentre $O$ and with $AC$ perpendicular to $BD$. Points $X$ and $Y$ lie on the circumcircle of the triangle $BOD$ such that $\angle AXO=\angle CYO=90^{\circ}$. Let $M$ be the midpoint of $AC$. Prove that $BD$ is tangent to the circumcircle of the triangle $MXY$.
2007 Princeton University Math Competition, 10
Pawns are arranged on an $8 \times 8$ chessboard such that:
Each $2 \times 1$ or $1 \times 2$ rectangle has at least $1$ pawn;
Each $7 \times 1$ or $1 \times 7$ rectangle has at least $1$ pair of adjacent pawns.
What is the minimum number of pawns in such an arrangement?
2005 Czech And Slovak Olympiad III A, 4
An acute-angled triangle $AKL$ is given on a plane. Consider all rectangles $ABCD$ circumscribed to triangle $AKL$ such that point $K$ lies on side $BC$ and point $L$ lieson side $CD$. Find the locus of the intersection $S$ of the diagonals $AC$ and $BD$.
2001 Swedish Mathematical Competition, 4
$ABC$ is a triangle. A circle through $A$ touches the side $BC$ at $D$ and intersects the sides $AB$ and $AC$ again at $E, F$ respectively. $EF$ bisects $\angle AFD$ and $\angle ADC = 80^o$. Find $\angle ABC$.
1999 Taiwan National Olympiad, 5
Let $AD,BE,CF$ be the altitudes of an acute triangle $ABC$ with $AB>AC$. Line $EF$ meets $BC$ at $P$, and line through $D$ parallel to $EF$ meets $AC$ and $AB$ at $Q$ and $R$, respectively. Let $N$ be any poin on side $BC$ such that $\widehat{NQP}+\widehat{NRP}<180^{0}$. Prove that $BN>CN$.
1984 IMO Longlists, 2
Given a regular convex $2m$- sided polygon $P$, show that there is a $2m$-sided polygon $\pi$ with the same vertices as $P$ (but in different order) such that $\pi$ has exactly one pair of parallel sides.
1999 All-Russian Olympiad, 3
A triangle $ABC$ is inscribed in a circle $S$. Let $A_0$ and $C_0$ be the midpoints of the arcs $BC$ and $AB$ on $S$, not containing the opposite vertex, respectively. The circle $S_1$ centered at $A_0$ is tangent to $BC$, and the circle $S_2$ centered at $C_0$ is tangent to $AB$. Prove that the incenter $I$ of $\triangle ABC$ lies on a common tangent to $S_1$ and $S_2$.
2017 Korea Winter Program Practice Test, 3
Let $\triangle ABC$ be a triangle with $\angle A \neq 60^\circ$. Let $I_B, I_C$ be the $B, C$-excenters of triangle $ABC$, let $B^\prime$ be the reflection of $B$ with respect to $AC$, and let $C^\prime$ be the reflection of $C$ with respect to $AB$. Let $P$ be the intersection of $I_C B^\prime$ and $I_B C^\prime$. Denote by $P_A, P_B, P_C$ the reflections of the point $P$ with respect to $BC, CA, AB$. Show that the three lines $A P_A, B P_B, C P_C$ meet at a single point.
2023 Kyiv City MO Round 1, Problem 5
Does there exist on the Cartesian plane a convex $2023$-gon with vertices at integer points, such that the lengths of all its sides are equal?
[i]Proposed by Anton Trygub[/i]
2014 Romania Team Selection Test, 1
Let $ABC$ a triangle and $O$ his circumcentre.The lines $OA$ and $BC$ intersect each other at $M$ ; the points $N$ and $P$ are defined in an analogous way.The tangent line in $A$ at the circumcircle of triangle $ABC$ intersect $NP$ in the point $X$ ; the points $Y$ and $Z$ are defined in an analogous way.Prove that the points $X$ , $Y$ and $Z$ are collinear.
1989 AMC 8, 15
The area of the shaded region $\text{BEDC}$ in parallelogram $\text{ABCD}$ is
[asy]
unitsize(10);
pair A,B,C,D,E;
A=origin; B=(4,8); C=(14,8); D=(10,0); E=(4,0);
draw(A--B--C--D--cycle);
fill(B--E--D--C--cycle,gray);
label("A",A,SW); label("B",B,NW); label("C",C,NE); label("D",D,SE); label("E",E,S);
label("$10$",(9,8),N); label("$6$",(7,0),S); label("$8$",(4,4),W);
draw((3,0)--(3,1)--(4,1));
[/asy]
$\text{(A)}\ 24 \qquad \text{(B)}\ 48 \qquad \text{(C)}\ 60 \qquad \text{(D)}\ 64 \qquad \text{(E)}\ 80$
1986 Bulgaria National Olympiad, Problem 3
A regular tetrahedron of unit edge is given. Find the volume of the maximal cube contained in the tetrahedron, whose one vertex lies in the feet of an altitude of the tetrahedron.
2020-21 IOQM India, 19
Let $ABCD$ be a parallelogram. Let $E$ and $F$ be the midpoints of sides $AB$ and $BC$ respectively. The lines $EC$ and $FD$ intersect at $P$ and form four triangles $APB, BPC, CPD, DPA$. If the area of the parallelogram is $100$, what is the maximum area of a triangles among these four triangles?
2022 Novosibirsk Oral Olympiad in Geometry, 4
In triangle $ABC$, angle $C$ is three times the angle $A$, and side $AB$ is twice the side $BC$. What can be the angle $ABC$?
1991 All Soviet Union Mathematical Olympiad, 555
$ABCD$ is a square. The points $X$ on the side $AB$ and $Y$ on the side $AD$ are such that $AX\cdot AY = 2 BX\cdot DY$. The lines $CX$ and $CY$ meet the diagonal $BD$ in two points. Show that these points lie on the circumcircle of $AXY$.