This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

2011 Saudi Arabia Pre-TST, 1.4

Let $ABC$ be a triangle with $AB=AC$ and $\angle BAC = 40^o$. Points $S$ and $T$ lie on the sides $AB$ and $BC$, such that $\angle BAT = \angle BCS = 10^o$. Lines $AT$ and $CS$ meet at $P$. Prove that $BT = 2PT$.

2016 PUMaC Geometry B, 8

Tags: geometry
Let $ABCD$ be a cyclic quadrilateral with circumcircle $\omega$ and let $AC$ and $BD$ intersect at $X$. Let the line through $A$ parallel to $BD$ intersect line $CD$ at $E$ and $\omega$ at $Y \ne A$. If $AB = 10, AD = 24, XA = 17$, and $XB = 21$, then the area of $\vartriangle DEY$ can be written in simplest form as $\frac{m}{n}$ . Find $m + n$.

Ukrainian TYM Qualifying - geometry, II.2

Is it true that when all the faces of a tetrahedron have the same area, they are congruent triangles?

2014 Turkey EGMO TST, 5

Let $ABC$ be a triangle with circumcircle $\omega$ and let $\omega_A$ be a circle drawn outside $ABC$ and tangent to side $BC$ at $A_1$ and tangent to $\omega$ at $A_2$. Let the circles $\omega_B$ and $\omega_C$ and the points $B_1, B_2, C_1, C_2$ are defined similarly. Prove that if the lines $AA_1, BB_1, CC_1$ are concurrent, then the lines $AA_2, BB_2, CC_2$ are also concurrent.

2018 JHMT, 3

Tags: geometry
An equilateral triangle $ABC$ is in between two parallel lines $x, y$ that pass through points $A$ and $B$ respectively. Given that $C$ is twice as far from $y$ as $x$, the acute angle that $CA$ makes with $x$ is $\theta$. Then $(\tan \theta)^2$ is of the form $\frac{p}{q}$ where $p, q$ are relatively prime positive integers. Find $p + q$.

2017 Ukraine Team Selection Test, 11

Let $ABC$ be a triangle with circumcircle $\Gamma$ and incenter $I$ and let $M$ be the midpoint of $\overline{BC}$. The points $D$, $E$, $F$ are selected on sides $\overline{BC}$, $\overline{CA}$, $\overline{AB}$ such that $\overline{ID} \perp \overline{BC}$, $\overline{IE}\perp \overline{AI}$, and $\overline{IF}\perp \overline{AI}$. Suppose that the circumcircle of $\triangle AEF$ intersects $\Gamma$ at a point $X$ other than $A$. Prove that lines $XD$ and $AM$ meet on $\Gamma$. [i]Proposed by Evan Chen, Taiwan[/i]

1987 IMO Longlists, 23

A lampshade is part of the surface of a right circular cone whose axis is vertical. Its upper and lower edges are two horizontal circles. Two points are selected on the upper smaller circle and four points on the lower larger circle. Each of these six points has three of the others that are its nearest neighbors at a distance $d$ from it. By distance is meant the shortest distance measured over the curved survace of the lampshade. Prove that the area of the lampshade is $d^2(2\theta + \sqrt 3)$ where $\cot \frac {\theta}{2} = \frac{3}{\theta}.$

2009 All-Russian Olympiad, 2

Let be given a triangle $ ABC$ and its internal angle bisector $ BD$ $ (D\in BC)$. The line $ BD$ intersects the circumcircle $ \Omega$ of triangle $ ABC$ at $ B$ and $ E$. Circle $ \omega$ with diameter $ DE$ cuts $ \Omega$ again at $ F$. Prove that $ BF$ is the symmedian line of triangle $ ABC$.

2018 Junior Balkan Team Selection Tests - Moldova, 3

Tags: geometry
Let $ABCD$ be a convex quadrilateral and $P$ and $Q$ are the midpoints of the diagonals $AC$ and $BD$,and $O$ their intersection point.Point $M$ is the midpoint of $AB$ and $N$ is the midpoint of $CD$ such that $ MN \cap AC ={E},MN \cap BD={F}$.Prove that $OE \cdot QF= OF\cdot PE $

2012 South East Mathematical Olympiad, 2

The incircle $I$ of $\triangle ABC$ is tangent to sides $AB,BC,CA$ at $D,E,F$ respectively. Line $EF$ intersects lines $AI,BI,DI$ at $M,N,K$ respectively. Prove that $DM\cdot KE=DN\cdot KF$.

2014 Contests, 4

We are given a circle $c(O,R)$ and two points $A,B$ so that $R<AB<2R$.The circle $c_1 (A,r)$ ($0<r<R$) crosses the circle $c$ at C,D ($C$ belongs to the short arc $AB$).From $B$ we consider the tangent lines $BE,BF$ to the circle $c_1$ ,in such way that $E$ lays out of the circle $c$.If $M\equiv EC\cap DF$ show that the quadrilateral $BCFM$ is cyclic.

2019 BMT Spring, 13

Tags: geometry , circles
Two circles $O_1$ and $O_2$ intersect at points $A$ and $B$. Lines $\overline{AC}$ and $\overline{BD}$ are drawn such that $C$ is on $O_1$ and $D$ is on $O_2$ and $\overline{AC} \perp \overline{AB}$ and $\overline{BD} \perp \overline{AB}$. If minor arc $AB= 45$ degrees relative to $O_1$ and minor arc $AB= 60$ degrees relative to $O_2$ and the radius of $O_2 = 10$, the area of quadrilateral $CADB$ can be expressed in simplest form as $a + b\sqrt{k} + c\sqrt{\ell}$. Compute $a + b + c + k +\ell$.

2014 CHMMC (Fall), 8

What’s the greatest pyramid volume one can form using edges of length $2, 3, 3, 4, 5, 5$, respectively?

2015 Princeton University Math Competition, A6/B8

Tags: geometry
Triangle $ABC$ is inscribed in a unit circle $\omega$. Let $H$ be its orthocenter and $D$ be the foot of the perpendicular from $A$ to $BC$. Let $\triangle XY Z$ be the triangle formed by drawing the tangents to $\omega$ at $A, B, C$. If $\overline{AH} = \overline{HD}$ and the side lengths of $\triangle XY Z$ form an arithmetic sequence, the area of $\triangle ABC$ can be expressed in the form $\tfrac{p}{q}$ for relatively prime positive integers $p, q$. What is $p + q$?

2022 Harvard-MIT Mathematics Tournament, 9

Tags: geometry
Let $A_1B_1C_1$, $A_2B_2C_2$, and $A_3B_3C_3$ be three triangles in the plane. For $1 \le i \le3$, let $D_i $, $E_i$, and $F_i$ be the midpoints of $B_iC_i$, $A_iC_i$, and $A_iB_i$, respectively. Furthermore, for $1 \le i \le 3$ let $G_i$ be the centroid of $A_iB_iC_i$. Suppose that the areas of the triangles $A_1A_2A_3$, $B_1B_2B_3$, $C_1C_2C_3$, $D_1D_2D_3$, $E_1E_2E_3$, and $F_1F_2F_3$ are $2$, $3$, $4$, $20$, $21$, and $2020$, respectively. Compute the largest possible area of $G_1G_2G_3$.

2010 Balkan MO Shortlist, G5

Let $ABC$ be an acute triangle with orthocentre $H$, and let $M$ be the midpoint of $AC$. The point $C_1$ on $AB$ is such that $CC_1$ is an altitude of the triangle $ABC$. Let $H_1$ be the reflection of $H$ in $AB$. The orthogonal projections of $C_1$ onto the lines $AH_1$, $AC$ and $BC$ are $P$, $Q$ and $R$, respectively. Let $M_1$ be the point such that the circumcentre of triangle $PQR$ is the midpoint of the segment $MM_1$. Prove that $M_1$ lies on the segment $BH_1$.

2018 BMT Spring, Tie 2

Tags: geometry
Points $A, B, C$ are chosen on the boundary of a circle with center $O$ so that $\angle BAC$ encloses an arc of $120$ degrees. Let $D$ be chosen on $\overline{BA}$ so that $\angle AOD$ is a right angle. Extend $\overline{CD}$ so that it intersects with $O$ again at point $P$. What is the measure of the arc, in degrees, that is enclosed by $\angle ACP$? Please use the $tan^{-1}$ function to express your answer.

2018 Pan-African Shortlist, G4

Let $ABC$ be a triangle and $\Gamma$ be the circle with diameter $[AB]$. The bisectors of $\angle BAC$ and $\angle ABC$ cut the circle $\Gamma$ again at $D$ and $E$, respectively. The incicrcle of the triangle $ABC$ cuts the lines $BC$ and $AC$ in $F$ and $G$, respectively. Show that the points $D, E, F$ and $G$ lie on the same line.

2006 India IMO Training Camp, 2

Let $ABCD$ be a parallelogram. A variable line $g$ through the vertex $A$ intersects the rays $BC$ and $DC$ at the points $X$ and $Y$, respectively. Let $K$ and $L$ be the $A$-excenters of the triangles $ABX$ and $ADY$. Show that the angle $\measuredangle KCL$ is independent of the line $g$. [i]Proposed by Vyacheslev Yasinskiy, Ukraine[/i]

2011 Oral Moscow Geometry Olympiad, 1

The bisector of angle $B$ and the bisector of external angle $D$ of rectangle $ABCD$ intersect side $AD$ and line $AB$ at points $M$ and $K$, respectively. Prove that the segment $MK$ is equal and perpendicular to the diagonal of the rectangle.

2014 Oral Moscow Geometry Olympiad, 6

A convex quadrangle $ABCD$ is given. Let $I$ and $J$ be the circles of circles inscribed in the triangles $ABC$ and $ADC$, respectively, and $I_a$ and $J_a$ are the centers of the excircles circles of triangles $ABC$ and $ADC$, respectively (inscribed in the angles $BAC$ and $DAC$, respectively). Prove that the intersection point $K$ of the lines $IJ_a$ and $JI_a$ lies on the bisector of the angle $BCD$.

2021 Sharygin Geometry Olympiad, 11

Tags: geometry
The midpoints of four sides of a cyclic pentagon were marked, after this the pentagon was erased. Restore it.

1995 AMC 12/AHSME, 19

Tags: geometry , ratio
Equilateral triangle $DEF$ is inscribed in equilateral triangle $ABC$ such that $\overline{DE} \perp \overline{BC}$. The ratio of the area of $\triangle DEF$ to the area of $\triangle ABC$ is [asy] size(180); pathpen = linewidth(0.7); pointpen = black; pointfontpen = fontsize(10); pair B = (0,0), C = (1,0), A = dir(60), D = C*2/3, E = (2*A+C)/3, F = (2*B+A)/3; D(D("A",A,N)--D("B",B,SW)--D("C",C,SE)--cycle); D(D("D",D)--D("E",E,NE)--D("F",F,NW)--cycle); D(rightanglemark(C,D,E,1.5));[/asy] $\textbf{(A)}\ \dfrac{1}{6}\qquad \textbf{(B)}\ \dfrac{1}{4} \qquad \textbf{(C)}\ \dfrac{1}{3} \qquad \textbf{(D)}\ \dfrac{2}{5} \qquad \textbf{(E)}\ \dfrac{1}{2}$

2000 Slovenia National Olympiad, Problem 3

Tags: geometry
A point $D$ is taken inside an isosceles triangle $ABC$ with base $AB$ and $\angle C=80^\circ$ such that $\angle DAB=10^\circ$ and $\angle DBA=20^\circ$. Compute $\angle ACD$.

2017 JBMO Shortlist, G3

Consider triangle $ABC$ such that $AB \le AC$. Point $D$ on the arc $BC$ of thecircumcirle of $ABC$ not containing point $A$ and point $E$ on side $BC$ are such that $\angle BAD = \angle CAE < \frac12 \angle BAC$ . Let $S$ be the midpoint of segment $AD$. If $\angle ADE = \angle ABC - \angle ACB$ prove that $\angle BSC = 2 \angle BAC$ .