This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

1989 Tournament Of Towns, (216) 4

Is it possible to mark a diagonal on each little square on the surface of a Rubik 's cube so that one obtains a non-intersecting path? (S . Fomin, Leningrad)

2000 AMC 12/AHSME, 10

The point $ P \equal{} (1,2,3)$ is reflected in the $ xy$-plane, then its image $ Q$ is rotated by $ 180^\circ$ about the $ x$-axis to produce $ R$, and finally, $ R$ is translated by 5 units in the positive-$ y$ direction to produce $ S$. What are the coordinates of $ S$? $ \textbf{(A)}\ (1,7, \minus{} 3) \qquad \textbf{(B)}\ ( \minus{} 1,7, \minus{} 3) \qquad \textbf{(C)}\ ( \minus{} 1, \minus{} 2,8) \qquad \textbf{(D)}\ ( \minus{} 1,3,3) \qquad \textbf{(E)}\ (1,3,3)$

2008 Iran MO (3rd Round), 1

Let $ ABC$ be a triangle with $ BC > AC > AB$. Let $ A',B',C'$ be feet of perpendiculars from $ A,B,C$ to $ BC,AC,AB$, such that $ AA' \equal{} BB' \equal{} CC' \equal{} x$. Prove that: a) If $ ABC\sim A'B'C'$ then $ x \equal{} 2r$ b) Prove that if $ A',B'$ and $ C'$ are collinear, then $ x \equal{} R \plus{} d$ or $ x \equal{} R \minus{} d$. (In this problem $ R$ is the radius of circumcircle, $ r$ is radius of incircle and $ d \equal{} OI$)

2018 Dutch BxMO TST, 4

In a non-isosceles triangle $\vartriangle ABC$ we have $\angle BAC = 60^o$. Let $D$ be the intersection of the angular bisector of $\angle BAC$ with side $BC, O$ the centre of the circumcircle of $\vartriangle ABC$ and $E$ the intersection of $AO$ and $BC$. Prove that $\angle AED + \angle ADO = 90^o$.

1999 Slovenia National Olympiad, Problem 3

Tags: geometry , incenter
The incircle of a right triangle $ABC$ touches the hypotenuse $AB$ at a point $D$. Show that the area of $\triangle ABC$ equals $AD\cdot DB$.

2000 VJIMC, Problem 4

Tags: geometry
Let us choose arbitrarily $n$ vertices of a regular $2n$-gon and color them red. The remaining vertices are colored blue. We arrange all red-red distances into a non-decreasing sequence and do the same with the blue-blue distances. Prove that the sequences are equal.

2004 Harvard-MIT Mathematics Tournament, 2

How many ways can you mark 8 squares of an $8\times8$ chessboard so that no two marked squares are in the same row or column, and none of the four corner squares is marked? (Rotations and reflections are considered different.)

2015 Saudi Arabia BMO TST, 3

Let $ABC$ be a triangle, $H_a, H_b$ and $H_c$ the feet of its altitudes from $A, B$ and $C$, respectively, $T_a, T_b, T_c$ its touchpoints of the incircle with the sides $BC, CA$ and $AB$, respectively. The circumcircles of triangles $AH_bH_c$ and $AT_bT_c$ intersect again at $A'$. The circumcircles of triangles $BH_cH_a$ and $BT_cT_a$ intersect again at $B'$. The circumcircles of triangles $CH_aH_b$ and $CT_aT_b$ intersect again at $C'$. Prove that the points $A',B',C'$ are collinear. Malik Talbi

2011 Balkan MO Shortlist, C2

Let $ABCDEF$ be a convex hexagon of area $1$, whose opposite sides are parallel. The lines $AB$, $CD$ and $EF$ meet in pairs to determine the vertices of a triangle. Similarly, the lines $BC$, $DE$ and $FA$ meet in pairs to determine the vertices of another triangle. Show that the area of at least one of these two triangles is at least $3/2$.

2004 Iran Team Selection Test, 4

Tags: geometry
Let $ M,M'$ be two conjugates point in triangle $ ABC$ (in the sense that $ \angle MAB\equal{}\angle M'AC,\dots$). Let $ P,Q,R,P',Q',R'$ be foots of perpendiculars from $ M$ and $ M'$ to $ BC,CA,AB$. Let $ E\equal{}QR\cap Q'R'$, $ F\equal{}RP\cap R'P'$ and $ G\equal{}PQ\cap P'Q'$. Prove that the lines $ AG, BF, CE$ are parallel.

1998 AIME Problems, 10

Eight spheres of radius 100 are placed on a flat surface so that each sphere is tangent to two others and their centers are the vertices of a regular octagon. A ninth sphere is placed on the flat surface so that it is tangent to each of the other eight spheres. The radius of this last sphere is $a+b\sqrt{c},$ where $a, b,$ and $c$ are positive integers, and $c$ is not divisible by the square of any prime. Find $a+b+c.$

1982 AMC 12/AHSME, 10

In the adjoining diagram, $BO$ bisects $\angle CBA$, $CO$ bisects $\angle ACB$, and $MN$ is parallel to $BC$. If $AB=12$, $BC=24$, and $AC=18$, then the perimeter of $\triangle AMN$ is [asy] size(200); defaultpen(linewidth(0.7)+fontsize(10)); pair B=origin, C=(24,0), A=intersectionpoints(Circle(B,12), Circle(C,18))[0], O=incenter(A,B,C), M=intersectionpoint(A--B, O--O+40*dir(180)), N=intersectionpoint(A--C, O--O+40*dir(0)); draw(B--M--O--B--C--O--N--C^^N--A--M); label("$A$", A, dir(90)); label("$B$", B, dir(O--B)); label("$C$", C, dir(O--C)); label("$M$", M, dir(90)*dir(B--A)); label("$N$", N, dir(90)*dir(A--C)); label("$O$", O, dir(90));[/asy] $\textbf {(A) } 30 \qquad \textbf {(B) } 33 \qquad \textbf {(C) } 36 \qquad \textbf {(D) } 39 \qquad \textbf {(E) } 42$

PEN R Problems, 11

Prove that if a lattice parallelogram contains at most three lattice points in addition to its vertices, then those are on one of the diagonals.

Brazil L2 Finals (OBM) - geometry, 2018.3

Let $ABC$ be an acute-angled triangle with circumcenter $O$ and orthocenter $H$. The circle with center $X_a$ passes in the points $A$ and $H$ and is tangent to the circumcircle of $ABC$. Define $X_b, X_c$ analogously, let $O_a, O_b, O_c$ the symmetric of $O$ to the sides $BC, AC$ and $AB$, respectively. Prove that the lines $O_aX_a, O_bX_b, O_cX_c$ are concurrents.

Estonia Open Senior - geometry, 2012.1.3

Let $ABC$ be a triangle with median AK. Let $O$ be the circumcenter of the triangle $ABK$. a) Prove that if $O$ lies on a midline of the triangle $ABC$, but does not coincide with its endpoints, then $ABC$ is a right triangle. b) Is the statement still true if $O$ can coincide with an endpoint of the midsegment?

2018 Nepal National Olympiad, 3a

Tags: geometry
[b]Problem Section #3 a) Circles $O_1$ and $O_2$ interest at two points $B$ and $C$, and $BC$ is the diameter of circle $O_1$. Construct a tangent line of circle $O_1$ at $C$ and intersecting circle $O_2$ at another point $A$. Join $AB$ to intersect circle $O_1$ at point $E$, then join $CE$ and extend it to intersect circle $O_2$ at point $F$. Assume $H$ is an arbitrary point on line segment $AF$. Join $HE$ and extend it to intersect circle $O_1$ at point $G$, and then join $BG$ and extend it to intersect the extend of $AC$ at point $D$. Prove: $\frac{AH}{HF}=\frac{AC}{CD}$.

2018 China Western Mathematical Olympiad, 5

In acute triangle $ABC,$ $AB<AC,$ $O$ is the circumcenter of the triangle. $M$ is the midpoint of segment $BC,$ $(AOM)$ intersects the line $AB$ again at $D$ and intersects the segment $AC$ at $E.$ Prove that $DM=EC.$

2016 May Olympiad, 3

Tags: midpoint , geometry
In a triangle $ABC$, let $D$ and $E$ point in the sides $BC$ and $AC$ respectively. The segments $AD$ and $BE$ intersects in $O$, let $r$ be line (parallel to $AB$) such that $r$ intersects $DE$ in your midpoint, show that the triangle $ABO$ and the quadrilateral $ODCE$ have the same area.

2016 Thailand Mathematical Olympiad, 8

Let $\vartriangle ABC$ be an acute triangle with incenter $I$. The line passing through $I$ parallel to $AC$ intersects $AB$ at $M$, and the line passing through $I$ parallel to $AB$ intersects $AC$ at $N$. Let the line $MN$ intersect the circumcircle of $\vartriangle ABC$ at $X$ and $Y$ . Let $Z$ be the midpoint of arc $BC$ (not containing $A$). Prove that $I$ is the orthocenter of $\vartriangle XY Z$

2003 Iran MO (3rd Round), 13

here is the most difficult and the most beautiful problem occurs in 21th iranian (2003) olympiad assume that P is n-gon ,lying on the plane ,we name its edge 1,2,..,n. if S=s1,s2,s3,.... be a finite or infinite sequence such that for each i, si is in {1,2,...,n}, we move P on the plane according to the S in this form: at first we reflect P through the s1 ( s1 means the edge which iys number is s1)then through s2 and so on like the figure below. a)show that there exist the infinite sequence S sucth that if we move P according to S we cover all the plane b)prove that the sequence in a) isn't periodic. c)assume that P is regular pentagon ,which the radius of its circumcircle is 1,and D is circle ,with radius 1.00001 ,arbitrarily in the plane .does exist a sequence S such that we move P according to S then P reside in D completely?

2012 NIMO Problems, 6

In $\triangle ABC$ with circumcenter $O$, $\measuredangle A = 45^\circ$. Denote by $X$ the second intersection of $\overrightarrow{AO}$ with the circumcircle of $\triangle BOC$. Compute the area of quadrilateral $ABXC$ if $BX = 8$ and $CX = 15$. [i]Proposed by Aaron Lin[/i]

2000 Tournament Of Towns, 2

The chords $AC$ and $BD$ of a, circle with centre $O$ intersect at the point $K$. The circumcentres of triangles $AKB$ and $CKD$ are $M$ and $N$ respectively. Prove that $OM = KN$. (A Zaslavsky )

2010 Kazakhstan National Olympiad, 6

Let $ABCD$ be convex quadrilateral, such that exist $M,N$ inside $ABCD$ for which $\angle NAD= \angle MAB; \angle NBC= \angle MBA; \angle MCB=\angle NCD; \angle NDA=\angle MDC$ Prove, that $S_{ABM}+S_{ABN}+S_{CDM}+S_{CDN}=S_{BCM}+S_{BCN}+S_{ADM}+S_{ADN}$, where $S_{XYZ}$-area of triangle $XYZ$

2015 JHMT, 9

Tags: geometry
In a triangle $ABC$, two angle trisectors of $A$ intersect with $BC$ at $D$ and $E$ respectively so that $B,D,E,C$ comes in order. If we have $BD = 3$, $DE = 1$ and $EC = 2$, find $\angle DAE$.

2016 Harvard-MIT Mathematics Tournament, 6

Tags: hmmt , geometry
Let $P_1, P_2, \ldots, P_6$ be points in the complex plane, which are also roots of the equation $x^6+6x^3-216=0$. Given that $P_1P_2P_3P_4P_5P_6$ is a convex hexagon, determine the area of this hexagon.