Found problems: 25757
PEN S Problems, 10
Let $p$ be an odd prime. Show that there is at most one non-degenerate integer triangle with perimeter $4p$ and integer area. Characterize those primes for which such triangle exist.
2016 HMNT, 1
Two circles centered at $O_1$ and $O_2$ have radii $2$ and $3$ and are externally tangent at $P$. The common external tangent of the two circles intersects the line $O_1O_2$ at $Q$. What is the length of $PQ$ ?
Swiss NMO - geometry, 2008.1
Let $ABC$ be a triangle with $\angle BAC \ne 45^o$ and $\angle ABC \ne 135^o$. Let $P$ be the point on the line $AB$ with $\angle CPB = 45^o$. Let $O_1$ and $O_2$ be the centers of the circumcircles of the triangles $ACP$ and $BCP$ respectively. Show that the area of the square $CO_1P O_2$ is equal to the area of the triangle $ABC$.
Russian TST 2015, P3
The triangle $ABC$ is given. Let $A'$ be the midpoint of the side $BC$, $B_c{}$ be the projection of $B{}$ onto the bisector of the angle $ACB{}$ and $C_b$ be the projection of the point $C{}$ onto the bisector of the angle $ABC$. Let $A_0$ be the center of the circle passing through $A', B_c, C_b$. The points $B_0$ and $C_0$ are defined similarly. Prove that the incenter of the triangle $ABC$ coincides with the orthocenter of the triangle $A_0B_0C_0$.
2023 South Africa National Olympiad, 2
$ABCD$ is a cyclic quadrilateral with $\angle BAD=90^\circ$ and $\angle ABC>90^\circ$. $AB$ is extended to a point $E$ such that $\angle AEC=90^\circ$.If $AB=7,BE=9,$ and $EC=12$,calculate $AD$.
2012 Today's Calculation Of Integral, 784
Define for positive integer $n$, a function $f_n(x)=\frac{\ln x}{x^n}\ (x>0).$ In the coordinate plane, denote by $S_n$ the area of the figure enclosed by $y=f_n(x)\ (x\leq t)$, the $x$-axis and the line $x=t$ and denote by $T_n$ the area of the rectagle with four vertices $(1,\ 0),\ (t,\ 0),\ (t,\ f_n(t))$ and $(1,\ f_n(t))$.
(1) Find the local maximum $f_n(x)$.
(2) When $t$ moves in the range of $t>1$, find the value of $t$ for which $T_n(t)-S_n(t)$ is maximized.
(3) Find $S_1(t)$ and $S_n(t)\ (n\geq 2)$.
(4) For each $n\geq 2$, prove that there exists the only $t>1$ such that $T_n(t)=S_n(t)$.
Note that you may use $\lim_{x\to\infty} \frac{\ln x}{x}=0.$
2006 Harvard-MIT Mathematics Tournament, 6
A circle of radius $t$ is tangent to the hypotenuse, the incircle, and one leg of an isosceles right triangle with inradius $r=1+\sin \frac{\pi}{8}$. Find $rt$.
2003 Cuba MO, 6
Let $P_1, P_2, P_3, P_4$ be four points on a circle, let $I_1$ be incenter of the triangle of vertices $P_2P_3P_4$, $I_2$ the incenter of the triangle $P_1P_3P_4$, $I_3$ the incenter of the triangle $P_1P_2P_4$, $I_4$ the incenter of the triangle $P_2P_3P_1$. Prove that $I_1I_2I_3I_4$ is a rectangle.
1992 Hungary-Israel Binational, 6
We examine the following two sequences: The Fibonacci sequence: $F_{0}= 0, F_{1}= 1, F_{n}= F_{n-1}+F_{n-2 }$ for $n \geq 2$; The Lucas sequence: $L_{0}= 2, L_{1}= 1, L_{n}= L_{n-1}+L_{n-2}$ for $n \geq 2$. It is known that for all $n \geq 0$
\[F_{n}=\frac{\alpha^{n}-\beta^{n}}{\sqrt{5}},L_{n}=\alpha^{n}+\beta^{n}, \]
where $\alpha=\frac{1+\sqrt{5}}{2},\beta=\frac{1-\sqrt{5}}{2}$. These formulae can be used without proof.
The coordinates of all vertices of a given rectangle are Fibonacci numbers. Suppose that the rectangle is not such that one of its vertices is on the $x$-axis and another on the $y$-axis. Prove that either the sides of the rectangle are parallel to the axes, or make an angle of $45^{\circ}$ with the axes.
2011 Romania National Olympiad, 3
In the convex quadrilateral $ABCD$ we have that $\angle BCD = \angle ADC \ge 90 ^o$. The bisectors of $\angle BAD$ and $\angle ABC$ intersect in $M$. Prove that if $M \in CD$, then $M$ is the middle of $CD$.
2014 Saint Petersburg Mathematical Olympiad, 5
Incircle $\omega$ of $ABC$ touch $AC$ at $B_1$. Point $E,F$ on the $\omega$ such that $\angle AEB_1=\angle B_1FC=90$. Tangents to $\omega$ at $E,F$ intersects in $D$, and $B$ and $D$ are on different sides for line $AC$. $M$- midpoint of $AC$.
Prove, that $AE,CF,DM$ intersects at one point.
2010 IFYM, Sozopol, 8
In the trapezoid $ABCD, AB // CD$ and the diagonals intersect at $O$. The points $P, Q$ are on $AD, BC$ respectively such that $\angle AP B = \angle CP D$ and $\angle AQB = \angle CQD$. Show that $OP = OQ$.
2007 Princeton University Math Competition, 6
Triangle $ABC$ has $AC = 3$, $BC = 5$, $AB = 7$. A circle is drawn internally tangent to the circumcircle of $ABC$ at $C$, and tangent to $AB$. Let $D$ be its point of tangency with $AB$. Find $BD - DA$.
[asy]
/* File unicodetex not found. */
/* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki, go to User:Azjps/geogebra */
import graph; size(6cm);
real labelscalefactor = 2.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */
pen dotstyle = black; /* point style */
real xmin = -4.5, xmax = 7.01, ymin = -3, ymax = 8.02; /* image dimensions */
/* draw figures */
draw(circle((1.37,2.54), 5.17));
draw((-2.62,-0.76)--(-3.53,4.2));
draw((-3.53,4.2)--(5.6,-0.44));
draw((5.6,-0.44)--(-2.62,-0.76));
draw(circle((-0.9,0.48), 2.12));
/* dots and labels */
dot((-2.62,-0.76),dotstyle);
label("$C$", (-2.46,-0.51), SW * labelscalefactor);
dot((-3.53,4.2),dotstyle);
label("$A$", (-3.36,4.46), NW * labelscalefactor);
dot((5.6,-0.44),dotstyle);
label("$B$", (5.77,-0.17), SE * labelscalefactor);
dot((0.08,2.37),dotstyle);
label("$D$", (0.24,2.61), SW * labelscalefactor);
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);
label("$7$",(-3.36,4.46)--(5.77,-0.17), NE * labelscalefactor);
label("$3$",(-3.36,4.46)--(-2.46,-0.51),SW * labelscalefactor);
label("$5$",(-2.46,-0.51)--(5.77,-0.17), SE * labelscalefactor);
/* end of picture */
[/asy]
1993 Tournament Of Towns, (374) 2
A square is constructed on the side $AB$ of triangle $ABC$ (outside the triangle).$ O$ is the centre of the square. $M$ and $N$ are the midpoints of the sides $BC$ and $AC$. The lengths of these sides are $a$ and $b$ respectively. Find the maximal possible value of the sum $CM + ON$ (when the angle at $C$ changes).
(IF Sharygin)
2023-24 IOQM India, 24
A trapezium in the plane is a quadrilateral in which a pair of opposite sides are parallel. A trapezium is said to be non-degenerate if it has positive area. Find the number of mutually non-congruent, non-degenerate trapeziums whose sides are four distinct integers from the set $\{5,6,7,8,9,10\}$
2004 Unirea, 1
Let be a point $ P $ on the diagonal $ BD $ (excluding its endpoints) of a quadrilateral $ ABCD, $ and $ Q $ be a point in the interior of $ ABD. $ The projections of $ P $ on $ AB,AD $ are $ P_1,P_2, $ respectively, and the projections of $ Q $ on $ AB,AD $ are $ Q_1,Q_2, $ respectively, and verify the equations $ AQ_1=\frac{1}{4}AB $ and $ AQ_2=\frac{1}{4}AD. $ Show that the point $ Q $ is not in the interior of $ AP_1P_2. $
2015 Argentina National Olympiad, 3
Consider the points $O = (0,0), A = (- 2,0)$ and $B = (0,2)$ in the coordinate plane. Let $E$ and $F$ be the midpoints of $OA$ and $OB$ respectively. We rotate the triangle $OEF$ with a center in $O$ clockwise until we obtain the triangle $OE'F'$ and, for each rotated position, let $P = (x, y)$ be the intersection of the lines $AE'$ and $BF'$. Find the maximum possible value of the $y$-coordinate of $P$.
2015 Saudi Arabia Pre-TST, 2.1
Let $ABC$ be a triangle and $D$ a point on the side $BC$. The tangent line to the circumcircle of the triangle $ABD$ at the point $D$ intersects the side $AC$ at $E$. The tangent line to the circumcircle of the triangle $ACD$ at the the point $D$ intersects the side $AB$ at $F$. Prove that the point $A$ and the circumcenters of the triangles $ABC$ and $DEF$ are collinear.
(Malik Talbi)
1980 Canada National Olympiad, 5
A parallelepiped has the property that all cross sections, which are parallel to any fixed face $F$, have the same perimeter as $F$. Determine whether or not any other polyhedron has this property.
Typesetter's Note: I believe that proof of existence or non-existence suffices.
2007 IMO Shortlist, 7
Given an acute triangle $ ABC$ with $ \angle B > \angle C$. Point $ I$ is the incenter, and $ R$ the circumradius. Point $ D$ is the foot of the altitude from vertex $ A$. Point $ K$ lies on line $ AD$ such that $ AK \equal{} 2R$, and $ D$ separates $ A$ and $ K$. Lines $ DI$ and $ KI$ meet sides $ AC$ and $ BC$ at $ E,F$ respectively. Let $ IE \equal{} IF$.
Prove that $ \angle B\leq 3\angle C$.
[i]Author: Davoud Vakili, Iran[/i]
2019 Purple Comet Problems, 7
The diagram shows some squares whose sides intersect other squares at the midpoints of their sides. The shaded region has total area $7$. Find the area of the largest square.
[img]https://cdn.artofproblemsolving.com/attachments/3/a/c3317eefe9b0193ca15f36599be3f6c22bb099.png[/img]
1989 Kurschak Competition, 1
In the plane, two intersecting lines $a$ and $b$ are given, along with a circle $\omega$ that has no common points with these lines. For any line $\ell||b$, define $A=\ell\cap a$, and $\{B,C\}=\ell\cap \omega$ such that $B$ is on segment $AC$. Construct the line $\ell$ such that the ratio $\frac{|BC|}{|AB|}$ is maximal.
2005 Colombia Team Selection Test, 1
Let $a,b,c$ be integers such that $\frac{a}{b}+\frac{b}{c}+\frac{c}{a}=3$ prove that $abc$ is a perfect cube!
2021 Kyiv City MO Round 1, 8.4
Let $BM$ be the median of the triangle $ABC$ with $AB > BC$. The point $P$ is chosen so that $AB\parallel PC$ and $PM \perp BM$. Prove that $\angle ABM = \angle MBP$.
[i]Proposed by Mykhailo Shandenko[/i]
2018 Bulgaria EGMO TST, 3
Let be given a semicircle with diameter $AB$ and center $O$, and a line intersecting the semicircle at $C$ and $D$ and the line $AB$ at $M$ ($MB < MA$, $MD < MC$). The circumcircles of the triangles $AOC$ and $DOB$ meet again at $L$. Prove that $\angle MKO$ is right.
[i]L. Kuptsov[/i]